自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 资源 (1)
  • 收藏
  • 关注

原创 RNTrajRec训练自己的数据

地图数据存放于./data/roadnet/{city}/目录下,包含三个文件。

2023-05-11 17:31:52 288

原创 MTrajRec代码阅读笔记

MTrajRec算法主要是将gps轨迹从低采样数据中恢复/预测出一个高采样的轨迹数据,并能够与地图上面的道路相互对应,它是一个端到端的算法,无需二次匹配。从https://download.geofabrik.de/下载数据。运行multi_main.py后将自动划分训练集、验证集、测试集到。从Geofabrik下载格式化的OSM数据。训练时将tdrive_mm数据放在项目。根据裁剪的数据构建和存储道路网络。根据感兴趣的区域裁剪数据。:清理的轨迹数据路径。

2023-05-09 19:54:35 160 2

原创 MTrajRec: Map-Constrained Trajectory Recovery via Seq2SeqMulti-task Learning

ABSTRACT随着GPS模块的采用越来越多,基于轨迹数据分析的城市应用范围越来越广泛,如车辆导航、出行时间估计和驾驶员行为分析等。城市应用的有效性在很大程度上依赖于与地图精确匹配的轨迹的高采样率。然而,在现实生活中,由于一定的通信损耗和能量约束,在低采样率下收集了大量的轨迹。为了增强轨迹数据,更有效地支持城市应用,提出了许多轨迹恢复方法来推断自由空间中的轨迹。此外,恢复的轨迹还需要映射到路网,才能应用于应用。然而,首先推断高采样率轨迹,然后执行地图匹配的两阶段管道是不准确和低效的。在本文中,我们提出了

2023-05-08 20:00:21 226

原创 KeyError: ‘exp_avg‘

KeyError: 'exp_avg'用SGD训练的模型,后来又在这个基础上改成了ADAM才出现的这个错误

2021-11-01 15:33:53 875 2

原创 pytorch训练过程中loss变成nan

在计算损失函数的时候有个log()函数,如果log(0)就会nan.所以一般会加上一个很小的数防止0的出现。例如eps=1e-12但当模型使用半精度的时候0+eps=0。所以就出现了错误。

2021-06-30 14:50:59 844

html canvas

大多数主流操作系统和框架支持的二维绘制操作,HTML5 Canvas API都支持。如果你在近年来曾经有过二维图像编程的经验,那么会对HTML5 Canvas API感觉非常顺手,因为这个API就是参照既有系统设计的。如果没有这方面经验,则会发现与这么多年来一直使用的图片加CSS开发Web图形的方式比起来,Canvas的渲染系统有多么强大。

2018-12-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除