MTrajRec: Map-Constrained Trajectory Recovery via Seq2SeqMulti-task Learning

ABSTRACT

随着GPS模块的采用越来越多,基于轨迹数据分析的城市应用范围越来越广泛,如车辆导航、出行时间估计和驾驶员行为分析等。城市应用的有效性在很大程度上依赖于与地图精确匹配的轨迹的高采样率。然而,在现实生活中,由于一定的通信损耗和能量约束,在低采样率下收集了大量的轨迹。为了增强轨迹数据,更有效地支持城市应用,提出了许多轨迹恢复方法来推断自由空间中的轨迹。此外,恢复的轨迹还需要映射到路网,才能应用于应用。然而,首先推断高采样率轨迹,然后执行地图匹配的两阶段管道是不准确和低效的。在本文中,我们提出了一个映射约束的轨迹恢复框架MTrajRec来恢复轨迹中的细粒度点,并以端到端方式在道路网络上进行映射匹配。MTrajRec实现了多任务序列序列学习架构,同时预测路段和移动比。提出了约束掩模、注意机制和性能模块,克服了粗网格表示的局限性,提高了性能。基于大规模真实轨迹数据的大量实验证实了我们的方法的有效性和有效性。

1 INTRODUCTION

目前,GPS模块已广泛应用于各种移动设备,生成的轨迹数据支持车辆导航[11]、行驶时间估计[6]、驾驶员行为分析[5]等应用。这些应用程序的有效性依赖于轨迹的采样率,因为低采样率的轨迹丢失了移动物体的详细信息,并增加了两个连续采样位置之间的不确定性。但在现实中,存在着大量的低采样率GPS轨迹数据。例如,出租车通常每2∼6分钟报告一次GPS位置,以降低通信[31]的能耗。

为了更好地利用这些低采样率的轨迹,已经提出了许多推理方法来恢复低采样率的轨迹。一个直接的解决方案是假设车辆正在以均匀的速度[10]移动。然而,动态行为不能以这种方式捕获移动模式。为了解决这一挑战,许多基于深度学习的模型已经被提出为[28–30]。例如,Wang等人[28]使用DHTR从低采样率轨迹中恢复了高采样率轨迹,该轨迹通过将序列到序列模型与卡尔曼滤波器的校准分量集成来预测高采样率点的粗粒度网格。然而,在轨迹恢复之后过程中,在轨迹数据可以被应用程序使用之前,仍然有一个地图匹配的[20]任务要完成。地图匹配任务将轨迹中的GPS点与道路网络对齐,是一个基本的预处理步骤。它不仅增强了基于道路的应用程序,如车辆导航[11]、旅行时间估计[6],而且还丰富了具有更多的语义意义的轨迹,从而有利于基于驾驶员的应用程序,如行为分析[5]。

传统的方法通过两阶段管道来解决地图约束的轨迹恢复问题,首先恢复低采样率的轨迹,然后实现一种地图匹配算法,将轨迹投影到道路网络上。虽然我们可以根据如图1所示的恢复的轨迹进行映射匹配,但推理误差是可以累积的。此外,由于映射匹配算法耗时,两阶段管道也效率低下。基于这些观察结果,一个很自然的问题出现了:我们能否恢复一个基于低采样率的高采样率轨迹,并同时对其进行地图匹配?端到端解决方案有望减少如图1底部所示的推理误差,提高效率。

幸运的是,随着神经网络的复兴,深度学习技术为解决复杂的任务提供了一个很有前途的计算框架,这给了我们一个以端到端方式解决挑战的机会。据我们所知,这项工作是第一次尝试恢复低采样率的轨迹,并将它们同时映射到道路网络上。具体来说,地图约束的轨迹恢复问题具有挑战性,原因如下:

(1)映射约束。[28–30]之前的工作集中于自由空间中的轨迹恢复。深度学习模型很难生成受道路网络约束的坐标。

(2)粗网格表示。将数值坐标转换为离散单元是基于深度学习的轨迹建模[7,21,23,28,30]常用的预处理策略,因为它可以降低无约束数值坐标的计算复杂度。然而,使用离散单元很可能会在模型中引入噪声或不准确的信息,这给细粒度轨迹恢复问题带来了挑战

(3)多样化的复杂因素。恢复精度受到交通条件的影响,因为车辆在现实世界中不会以恒定的速度移动。交通条件是由许多复杂的因素决定的,如空间背景、时间依赖性和天气条件[27]。在这种情况下,仅使用低采样率的轨迹数据并不足以准确地恢复缺失的点。

为了解决这些挑战,在本文中,我们提出了一种新的映射约束轨迹恢复模型,即MTrajRec,它是基于序列到序列(Seq2Seq)多任务学习。MTrajRec通过插值道路网上的缺失点来恢复轨迹。首先,为了保证在道路网络上受约束的恢复轨迹,我们在经典的Seq2Seq生成框架中引入了多任务学习,通过同时预测路段id和移动比率。为了处理粗网格表示

我们设计了一个约束掩模层提取细粒度信息。最后,由于流量受到复杂因素的影响,我们使用了一个属性模块来捕获外部影响。总的来说,我们的主要贡献可以总结如下:我们首次尝试通过Seq2Seq多任务学习来解决地图约束的轨迹恢复问题。•我们设计了一种新的MTrajRec模型,它可以同时恢复轨迹并将其映射到道路网络上。我们利用约束掩模、注意机制和属性模块来提高实验性能。•我们使用一个真实世界的出租车轨迹数据集进行了大量的实验,以评估我们提出的MTrajRec的有效性和效率。

2 OVERVIEW

2.1 Preliminaries

定义1。轨迹轨迹𝜏可以定义为带有时间戳的GPS位置序列,即,𝜏=〈𝑝1,𝑝2,···,𝑝𝑛〉,,其中𝑝𝑖=〈𝑙𝑎𝑡,𝑙𝑛𝑔,𝑡〉,∀𝑖,1≤𝑖≤𝑛,捕获时间戳𝑡处GPS位置的纬度和经度。

定义2。道路网络。路网是有向图G =(V、E),其中V={𝑣1,𝑣2,···,𝑣𝐾}是一组表示路段交叉口的节点,E={𝑒1,𝑒2,···,𝑒𝐿}是一组边表示连接V中节点𝑣的路段。对于每个𝑒∈E,它包含三个属性:1)起点和结束节点,表示路段的起点和结束GPS位置;2)长度,表示路段的米距离;3)水平,表示道路类型,如公路、道路等,不同颜色如图2(a)所示

定义3。地图匹配。由于GPS设备的测量误差,GPS数据不精确。地图匹配是一种转换原始纬度/经度坐标序列的过程,这样原始的GPS点将被投影到道路网络上。

定义4。地图匹配的轨迹点。地图匹配的轨迹点记为𝑎=𝑒,𝑟,𝑡,其中𝑒为路段ID,𝑟为移动比,表示移动距离与路段长度之比,𝑡为时间戳。图2.(b)对𝑟进行了详细的说明。利用路段ID𝑒和移动比𝑟,我们可以唯一地表示道路网上的一个位置。转换函数的公式如下:

𝑝.𝑙𝑎𝑡 = 𝑎.𝑒.𝑠𝑡𝑎𝑟𝑡 .𝑙𝑎𝑡 + 𝑎.𝑟 ∗ ( 𝑎.𝑒.𝑒𝑛𝑑.𝑙𝑎𝑡 𝑎.𝑒.𝑠𝑡𝑎𝑟𝑡 .𝑙𝑎𝑡 )
𝑝.𝑙𝑛𝑔 = 𝑎.𝑒.𝑠𝑡𝑎𝑟𝑡 .𝑙𝑛𝑔 + 𝑎.𝑟 ∗ ( 𝑎.𝑒.𝑒𝑛𝑑.𝑙𝑛𝑔 𝑎.𝑒.𝑠𝑡𝑎𝑟𝑡 .𝑙𝑛𝑔 )
𝑝.𝑡 = 𝑎.𝑡
定义5。采样率。采样率𝜖是一个轨迹的两个连续采样点之间的时间差,这通常取决于设备的设置。定义6。地图匹配的𝜖-采样率轨迹。具有𝜖采样率的地图匹配的轨迹˜𝜏是一系列地图匹配的轨迹点,即,˜𝜏=〈𝑎1,𝑎2,···,𝑎𝑚〉,,其中𝑎𝑗=〈𝑒,𝑟,𝑡〉,∀𝑗,1≤𝑗≤𝑚和𝑎𝑗+1.𝑡−𝑎𝑗.𝑡=𝜖.为简单起见,我们将˜𝜏命名为𝜖-MM轨迹。
需要注意的是,虽然𝜖-MM轨迹˜𝜏是均匀采样的,但轨迹𝜏中的点可能不会在时间戳中均匀分布,这比均匀分布更具挑战性。此外,𝜖-MM轨迹˜𝜏在路网上进行了映射匹配,而轨迹𝜏由于GPS噪声而没有受到路网的完全约束。通常,轨迹𝜏中的点以较低的采样率收集的。

2.2 Problem Definition

给定一个低采样率的轨迹𝜏=〈𝑝1,𝑝2,···,𝑝𝑛〉和一个目标采样率的𝜖,我们的目标是恢复真实的地图匹配的𝜖-采样率轨迹˜𝜏=〈&

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值