Flutter sklite库机器学习

本文介绍了如何在Flutter中使用sklite库来执行预先训练的机器学习模型。sklite主要用于运行SKLearn训练的分类模型,支持多种分类算法。文章详细讲解了sklite的引入方法和基本使用步骤,包括将模型文件放入assets目录并在Flutter代码中调用。
摘要由CSDN通过智能技术生成

Flutter机器学习

最近逛Pub.Dev时偶然看到一个有关机器学习的插件,名称叫做sklite,作者是
alexander@kialo.ai,虽然已经有一段时间没更新了,但用起来效果还不错,我在这里记录一下使用心得。

sklite介绍

sklite库本身不能执行机器学习算法,它主要的功能是执行已训练好的分类模型。即使用SKlearn训练数据集,并导出model,将model放入Flutter工程中。Flutter端程序也很简单,使用predict(x)即可返回分类的结果。

sklite支持的分类算法

算法 中文 是否支持
KNeighborsClassifier K近邻分类器
SVC 支持向量机分类器
GaussianProcessClassifier 高斯过程分类器
DecisionTreeClassifier 决策树分类器
RandomForestClassifier 随机森林分类器
MLPClassifier MLP分类器
AdaBoostClassifier
GaussianNB 先验为高斯分布的朴素贝叶斯
QuadraticDiscriminantAnalysis 二次判别分析(QDA)
BernoulliNB 伯努利贝叶斯分类器
LinearSVC 线性支持向量机分类器

sklite包引入

这一步想必很多人都会操作,但这里还是多嘴一下吧。
打开工程目录下的“pubspec.yaml”文件,在对应位置写入下面的代码,两种引入方式二选一。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值