基于鸢尾花数据集的传统机器学习模型效果对比

本文使用鸢尾花数据集训练逻辑回归、k近邻、决策树、随机森林、XGB、SVM和朴素贝叶斯算法,通过模型训练和验证,对比各模型的效果。
摘要由CSDN通过智能技术生成

基于鸢尾花数据集的传统机器学习模型效果对比

本文基于鸢尾花数据集进行训练,分别对逻辑回归、k近邻、决策树、随机森林、XGB、SVM、朴素贝叶斯算法进行训练,并对比最终模型效果示例。

数据获取

iris_data = datas.load_iris()
X = iris_data.data
Y = iris_data.target

数据划分

x_train,x_test,y_train,y_test = train_test_split(X, Y, test_size=0.2, random_state=20)
print("训练集数据X的形状:{}".format(x_train.shape))
print("训练集数据Y的形状:{}".format(y_train.shape))
print("测试集数据X的形状:{}".format(x_test.shape))
print("测试集数据Y的形状:{}".format(y_test.shape))

print("训练集数据Y的取值:{}".format(np.unique(y_train)))
print("测试集数据Y的取值:{}".format(np.unique(y_test)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IDONTCARE8

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值