智谱AI通用大模型:本地部署ChatGLM3-6B开源大模型

目录

一、ChatGLM3介绍

二、环境配置和检查

2.1 操作系统

2.2 硬件环境

2.3 软件环境

三、本地源码部署

3.1 克隆源码

3.2 下载模型文件

3.3 安装依赖

3.4 代码调用

四、运行Demo

4.1 设置本地模型环境变量

4.2 Gradio 网页版 Demo

4.3 Streamlit  网页版 Demo

4.4 命令行交互Demo


一、ChatGLM3介绍

        ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。

开源模型序列

模型

介绍

代码链接

模型下载

ChatGLM3-6B

第三代 ChatGLM 对话模型。ChatGLM3-6B 采用了全新设计的 Prompt 格式,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。 ChatGLM3

Huggingface

魔搭社区 

ChatGLM3-6B-base

第三代ChatGLM基座模型。ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能。

Huggingface

 

魔搭社区

ChatGLM3-6B-32k

第三代ChatGLM长上下文对话模型。在ChatGLM3-6B的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多32K长度的上下文。

Huggingface

魔搭社区

ChatGLM3-6B-128k

ChatGLM3-6B-128K在ChatGLM3-6B的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多128K长度的上下文。具体地,我们对位置编码进行了更新,并设计了更有针对性的长文本训练方法,在对话阶段使用 128K 的上下文长度训练。在实际的使用中,如果您面临的上下文长度基本在 8K 以内,我们推荐使
<think>好的,我现在需要回答用户关于开源LLM模型的问题。首先,用户之前问了如何部署Langchain-Chatchat,现在转向询问有哪些开源的LLM模型。这可能意味着用户对构建自己的聊天应用感兴趣,或者想了解可用的模型选项。 首先,我需要确定用户的需求。他们可能想了解目前主流的开源大语言模型,以便选择适合自己项目的模型。考虑到用户之前的问题涉及部署,他们可能对模型的易用性、硬件要求和中文支持特别关注。 接下来,我需要回忆当前知名的开源LLM模型。例如,Meta的Llama系列,特别是Llama 2和最新的Llama 3,这些都是非常重要的模型,拥有多种尺寸,适合不同计算资源。然后是中国的模型,比如ChatGLM系列(如ChatGLM3-6B),由AI开发,支持中英双语,这对中文用户来说很关键。还有百川能的Baichuan系列,以及零一万物的Yi模型,这些也都是中文社区中比较流行的。 另外,像Falcon、Mistral和MosaicML的MPT系列也是国际上的热门选择。需要提到它们的参数规模、适用场景以及许可证情况,因为有些模型虽然开源,但商用可能需要授权,比如Llama 2需要Meta的许可。 用户可能还关心模型的下载渠道,比如Hugging Face、ModelScope等平台,以及如何快速部署这些模型。同时,需要注意模型的硬件需求,比如显存大小,是否需要GPU加速等,这对用户部署时的硬件准备很重要。 此外,可能还需要提到一些微调框架,比如LLaMA-Factory,方便用户根据自己的需求对模型进行调整。最后,强调选择模型时要考虑语言支持、硬件限制和许可协议,确保合规和适用性。 需要组织这些信息,分门别类,结构清晰。可能分为国际模型、中文模型、其他模型,每个类别下列举几个主要模型,介绍其特点、参数、许可证和适用场景。同时,给出参考链接,方便用户进一步查阅。 检查是否有遗漏的重要模型,比如最近发布的模型,如Qwen(通义千问)的开源版本,或者DeepSeek等。确保信息更新及时,特别是版本号,如Llama 3是较新的发布,需要包含进去。 最后,用简洁明了的语言表达,避免技术术语过多,但保持专业性。确保每个要点的信息准确无误,特别是许可证和下载来源,避免误导用户。</think>以下是当前主流的开源大语言模型分类介绍(截至2024年5月最新信息): --- ### **一、国际主流开源模型** 1. **Llama 系列(Meta)** - **Llama 3**(最新) - 参数规模:8B/70B - 特点:支持8K上下文,多语言优化 - 许可证:需申请商用授权 - 下载:https://llama.meta.com - **Llama 2**(经典版) - 参数:7B/13B/70B - 适用场景:通用对话、推理任务 - 衍生版本:Chinese-Llama-2(中文优化) 2. **Mistral 系列** - **Mistral-7B** - 特点:7B参数超越13B模型性能 - 优势:内存效率高(适合消费级显卡) - 许可证:Apache 2.0 3. **Falcon 系列(TII UAE)** - **Falcon-40B/180B** - 特色:基于Apache 2.0完全开源 - 适用场景:商业应用、多轮对话 --- ### **二、中文优化模型** | 模型名称 | 参数规模 | 亮点特性 | 推荐场景 | |------------------|----------|------------------------------|-----------------------| | **ChatGLM3-6B** | 6B | 中英双语、微调工具链完善 | 企业知识库问答 | | **Baichuan2** | 7B/13B | 支持法律/医疗垂直领域 | 专业领域对话 | | **Qwen-7B** | 7B | 阿里研发,支持插件扩展 | 复杂任务处理 | | **Yi-34B** | 34B | 全球首个200K上下文窗口 | 长文档理解 | | **DeepSeek-MoE** | 16B | 稀疏架构(显存节省40%) | 资源受限环境 | --- ### **三、其他重要模型** 1. **MPT 系列(MosaicML)** - 特色:支持8K+长上下文 - 推荐版本:MPT-30B(商用友好) 2. **Bloom(BigScience)** - 参数:176B - 特点:多语言支持(46种语言) - 局限:需要高性能硬件 3. **StarCoder(代码专用)** - 参数:15.5B - 专长:代码生成/补全 - 许可证:商用需授权 --- ### **四、模型获取渠道** 1. **Hugging Face Hub** ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="meta-llama/Llama-2-7b-chat") ``` 2. **ModelScope(国内镜像)** ```bash git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git ``` 3. **官方Git仓库** - Baichuan:https://github.com/baichuan-inc - ChatGLM:https://github.com/THUDM --- ### **五、选型建议** 1. **资源优先型**: - 低显存(8GB):选择ChatGLM3-6B量化版 - 中等显存(24GB):Mistral-7B 2. **中文任务优先**: - 通用场景:Qwen-7B - 长文本处理:Yi-34B 3. **商业应用**: - 合规首选:Falcon-40B(Apache 2.0) - 高性能需求:Llama3-70B(需授权) --- ### **重要提醒** 1. 使用Llama系列需注意商用授权限制 2. 中文模型推荐搭配RAG技术增强效果 3. 最新趋势:MoE架构模型(如DeepSeek-MoE)显存效率提升显著 建议通过LLaMA-Factory等微调框架进行二次开发:https://github.com/hiyouga/LLaMA-Factory
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_37559973

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值