智谱AI通用大模型:本地部署ChatGLM3-6B开源大模型

目录

一、ChatGLM3介绍

二、环境配置和检查

2.1 操作系统

2.2 硬件环境

2.3 软件环境

三、本地源码部署

3.1 克隆源码

3.2 下载模型文件

3.3 安装依赖

3.4 代码调用

四、运行Demo

4.1 设置本地模型环境变量

4.2 Gradio 网页版 Demo

4.3 Streamlit  网页版 Demo

4.4 命令行交互Demo


一、ChatGLM3介绍

        ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。

开源模型序列

模型

介绍

代码链接

模型下载

ChatGLM3-6B

第三代 ChatGLM 对话模型。ChatGLM3-6B 采用了全新设计的 Prompt 格式,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。 ChatGLM3

Huggingface

魔搭社区 

ChatGLM3-6B-base

第三代ChatGLM基座模型。ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能。

Huggingface

 

魔搭社区

ChatGLM3-6B-32k

第三代ChatGLM长上下文对话模型。在ChatGLM3-6B的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多32K长度的上下文。

Huggingface

魔搭社区

ChatGLM3-6B-128k

ChatGLM3-6B-128K在ChatGLM3-6B的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多128K长度的上下文。具体地,我们对位置编码进行了更新,并设计了更有针对性的长文本训练方法,在对话阶段使用 128K 的上下文长度训练。在实际的使用中,如果您面临的上下文长度基本在 8K 以内,我们推荐使
### 如何在 Dify 中集成和使用大模型 要在 Dify 平台中集成和使用大模型,可以通过以下方式实现完整的功能支持。以下是关于如何配置以及调用的具体方法: #### 配置环境 首先需要确保本地已安装并运行了 Dify 的源码版本。如果尚未完成部署,请按照官方文档中的说明进行设置[^2]。完成后,进入项目的配置文件目录。 #### 修改配置文件 找到 `config.yaml` 或类似的全局配置文件,在其中添加大模型的相关参数。通常情况下,这涉及 API 密钥和服务地址的指定。例如: ```yaml model_providers: zhipu: api_key: "your_zhipu_api_key" base_url: "https://api.zhipuai.com" ``` 此部分定义了与大模型交互所需的基础信息[^1]。 #### 创建自定义插件或扩展 为了更好地适配大模型的功能特性,建议创建一个新的插件或者修改现有的 LLM 调用逻辑。假设我们正在处理的是基于对话的任务,则可以在代码层面上调整如下内容: ```python from dify import ModelProvider class ZhiPuModel(ModelProvider): def __init__(self, config): super().__init__(config) self.api_key = config['zhipu']['api_key'] self.base_url = config['zhipu']['base_url'] def generate(self, prompt): headers = { 'Authorization': f'Bearer {self.api_key}', 'Content-Type': 'application/json' } payload = {"prompt": prompt} response = requests.post(f"{self.base_url}/v1/generate", json=payload, headers=headers) if response.status_code == 200: result = response.json() return result.get('data', {}).get('text') else: raise Exception("Failed to get a valid response from the model.") ``` 上述代码片段展示了如何封装一个针对大模型的新类,并实现了基本的文字生成接口[^2]。 #### 测试新集成 最后一步就是测试整个流程是否正常工作。启动应用程序后尝试发送一些简单的请求给服务器端点来验证返回的结果是否符合预期。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_37559973

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值