leetcode. 498(对角线遍历)

给定一个含有 M x N 个元素的矩阵(M 行,N 列),请以对角线遍历的顺序返回这个矩阵中的所有元素,对角线遍历如下图所示。
示例:
输入:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
输出: [1,2,4,7,5,3,6,8,9]

方法一:

每层的索引和相等:

  1. 假设矩阵无限大;
  2. 索引和为{偶}数,向上遍历,{横}索引值递减,遍历值依次是(x,0),(x-1,1),(x-2,2),…,(0,x)
  3. 索引和为{奇}数,向下遍历,{纵}索引值递减,遍历值依次是(0,y),(1,y-1),(2,y-2),…,(y,0)每层的索引和:
    0: (00)
    1: (01)(10)
    2: (20)(11)(02)
    3: (03)(12)(21)(30)
    4: (40)(31)(22)(13)(04)
    5: (05)(14)(23)(32)(41)(50)
    6: (60)(51)…(06)
    按照“层次”遍历

代码如下:

class Solution {
public:
    vector<int> findDiagonalOrder(vector<vector<int>>& matrix) {
        vector<int>result;
        int hang=matrix.size();
        if (hang==0)return result;
        int lie=matrix[0].size();
        int cengshu=hang+lie;
        for(int x=0;x<cengshu;x++){
            if(x%2==0)
            {
                for(int i=x;i>=0;i--)
                {
                    int j=x-i;
                    if((i<hang)&&(j<lie))
                    {
                        result.push_back(matrix[i][j]);
                    }  
                }
            }
            else
            {
                for(int j=x;j>=0;j--)
                {
                    int i=x-j;
                    if((j<lie)&&(i<hang))
                    {
                       result.push_back(matrix[i][j]);
                    }
                }
            }
        }
        return result;
    }
};

方法二:
直接遍历时按照 “右上” 和 “左下” 移动。

class Solution {
public:
    vector<int> findDiagonalOrder(vector<vector<int>>& matrix) {
        if(matrix.empty()||matrix[0].empty())return {};
        int m=matrix.size(),n=matrix[0].size();//m行,n列
        vector<int> result(m*n);
        vector<vector<int>> move{{-1,1},{1,-1}};//右上和左下移动
        int row=0,col=0,k=0;
        for(int i=0;i<m*n;i++){
            result[i]=matrix[row][col];
            row=row+move[k][0];
            col=col+move[k][1];
            if(row>=m){//碰到下边界
                row=m-1;
                col=col+2;
                k=1-k;
            }
            if(col>=n){//碰到右边界
                col=n-1;
                row=row+2;
                k=1-k;
            }
            if(row<0){//碰到上边界
                row=0;
                k=1-k;
            }
            if(col<0){//碰到左边界
                col=0;
                k=1-k;
            }
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值