LeetCode 498. 对角线遍历

这篇博客介绍了一个矩阵对角线遍历的算法,给出了一种按对角线顺序返回矩阵所有元素的方法。算法考虑了不同对角线的遍历方向,包括从左下到右上和从右上到左下,并处理了边界条件,确保了所有对角线都被正确遍历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给你一个大小为 m x n 的矩阵 mat ,请以对角线遍历的顺序,用一个数组返回这个矩阵中的所有元素。

示例

输入:mat = [[1,2,3],[4,5,6],[7,8,9]]
输出:[1,2,4,7,5,3,6,8,9]

思路

一个矩阵,假设共有n行,m列,则其对角线(指的是/这种方向的对角线,而不是\)一共有n + m - 1条。假设对角线编号从0开始,则所有对角线的编号范围则是[0,n + m - 2],并且容易得到一个性质,编号为i的对角线上的点,其横纵坐标之和等于i

观察数据样例可知:编号i为偶数的对角线,遍历方向是从左下到右上;编号i为奇数的对角线,遍历方向是从右上到左下。

从左下到右上,点的坐标的变化是,行数减1,列数加1。即x--y++

从右上到左下,点的坐标的变化是,行数加1,列数减1,。即x++y--

当一条对角线遍历完成后,我们需要找到下一个点作为起点,并翻转遍历方向。

找到下一个点作为起点,可以分情况讨论。

设当前遍历的对角线的编号为i

  • 当方向是从左下到右上时
    • i < m - 1时,下一个起点的列,一定是i + 1,即 y = i + 1,而行,可以直接根据根据对角线上所有点的横纵坐标是个常数,来算出来,即x = (i + 1) - y
    • i >= m - 1时,下一个起点的列,只能到最后一列,即y = m - 1,而x = (i + 1) - y
  • 当方向是从右上到左下时
    • i < n - 1时,下一个起点的行,一定是i + 1,即x = i + 1,而y = (i + 1) - x
    • i >= n - 1时,下一个起点的行,只到最后一行,即x = n - 1,而y = (i + 1) - x
class Solution {
    // 重要性质: 同一条对角线上的点, 其[x,y]坐标的和是固定的
    // 对角线条数, 总共 m + n - 1 条
    // 第 i 条对角线上的坐标的和为 i
    // 和为偶数, 向右上角走 (x--, y++)
    // 和为奇数, 向左下角走 (x++, y--)
    public int[] findDiagonalOrder(int[][] mat) {
        int n = mat.length, m = mat[0].length;
        int[] ans = new int[n * m];
        int k = 0;
        int x = 0, y = 0;
        for (int i = 0; i < n + m - 1; i++) {
           if ((i & 1) == 0) {
               // 把这条线走到头
               while (x >= 0 && y < m) ans[k++] = mat[x--][y++];
               if (i < m - 1) y = i + 1;
               else y = m - 1;
               x = i + 1 - y;
           } else {
               while (x < n && y >= 0) ans[k++] = mat[x++][y--];
               if (i < n - 1) x = i + 1;
               else x = n - 1;
               y = i + 1 - x;
           }
        }
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值