自然语言处理
文章平均质量分 95
介绍自然语言处理相关内容
知然xu
这个作者很懒,什么都没留下…
展开
-
Rasa系列教程(二) -- Rasa NLU基础
Rasa NLU基础原创 2022-09-18 16:00:05 · 3355 阅读 · 1 评论 -
Rasa系列教程(一) -- 系统及各组件介绍
Rasa系列教程原创 2022-09-18 13:07:21 · 4126 阅读 · 0 评论 -
拥抱Transformer,图解NLP处理流程四部曲
一、Transformer简介 Transformer是google团队在2017年提出来的,它的问世刷新了一系列NLP竞赛的结果,现在也成为各大NLP爱好者的首选结构,诸如ELMO、Bert等超牛的model都是在transform的思想上实现的。 Transformer的基本结构如下图所示,详情可以参考我的另一篇博客:二、NLP四部曲...原创 2019-03-14 19:58:38 · 2767 阅读 · 3 评论 -
BERT简述
本文从词嵌入出发,一步步介绍Bert出现的背景,故文章前一部分的介绍可能与Bert的相关性不强,但是必不可少。1、词向量 词向量一直是领先的NLP模型处理语言的主要能力。Word2Vec、Glove等方法已广泛应用于此类任务。让我们先回顾一下如何使用它们。 对于要由机器学习模型处理的单词,它们需要以某种数字形式表示,以便模型可以在其计算中使用。Word2Vec...原创 2018-12-27 11:11:41 · 2316 阅读 · 0 评论 -
Transform中的Attention注意力机制
本文边讲细节边配合代码实战,代码地址为:https://github.com/princewen/tensorflow_practice/tree/master/basic/Basic-Transformer-Demo数据地址为:https://pan.baidu.com/s/14XfprCqjmBKde9NmNZeCNg密码:lfwu1、Attention发展史 ...原创 2018-12-20 11:16:23 · 11220 阅读 · 7 评论 -
词向量发展史-共现矩阵-SVD-NNLM-Word2Vec-Glove-ELMo
话不多说,直接上干货。首先介绍相关概念:词嵌入:把词映射为实数域上向量的技术也叫词嵌入(word embedding)。词向量的分类表示:一、共现矩阵 通过统计一个事先指定大小的窗口内的word共现次数,以word周边的共现词的次数做为当前word的vector。具体来说,我们通过从大量的语料文本中构建一个共现矩阵来定义word representation。...原创 2018-12-13 15:47:10 · 13744 阅读 · 7 评论 -
NLP之NER
最近在研究nlp中的命名实体识别,针对读过的一些文章在此做个总结。 对于NER的方法,主要分为两大类:基于规则的方法和基于统计的方法。 (1)基于规则的方法更接近人的思维,例如,针对人名常见的规则:<姓氏>+<名字>、针对地名常见的规则:<地方部分>+<地方指示词>、针对组织名常见的规则:{[人名][地名][组...原创 2018-07-06 11:06:25 · 3923 阅读 · 1 评论