Largest Sum of Averages

We partition a row of numbers A into at most K adjacent (non-empty) groups, then our score is the sum of the average of each group. What is the largest score we can achieve?

Note that our partition must use every number in A, and that scores are not necessarily integers.

Example:
Input: 
A = [9,1,2,3,9]
K = 3
Output: 20
Explanation: 
The best choice is to partition A into [9], [1, 2, 3], [9]. The answer is 9 + (1 + 2 + 3) / 3 + 9 = 20.
We could have also partitioned A into [9, 1], [2], [3, 9], for example.
That partition would lead to a score of 5 + 2 + 6 = 13, which is worse.

动态规划的思想:

    想要知道n个数分成k组,各组平均数之和的最大值。

    就要看前T个数分成k-1组+剩余n-T个数分成一组,然后平均数之和的最大值。

    即

 for (int i = n - 1; i > 0; --i) {
     cur += A[i];
     memo[n][k] = max(memo[n][k], memo[i][k-1] + cur / (n - i));
 }

   如果以n为横坐标,k为纵坐标绘制表格:

 n=1n=2n=3n=4n=5
k=1     
k=2     
k=3     
k=4     
k=5     

    则框格(5,5)(n=5,k=5)由框格(4,4)计算得到

    (4,4)由(3,3)计算得到

    (3,3)由(2,2)计算得到


    递归实现。


  double memo[200][200];
    double largestSumOfAverages(vector<int>& A, int K) {
        memset(memo, 0, sizeof(memo));
        int N = A.size();
        double cur = 0;
        for (int i = 0; i < N; ++i) {
            cur += A[i];
            memo[i + 1][1] = cur / (i + 1);
        }
        return search(N, K, A);
    }

    double search(int n, int k, vector<int>& A) {
        if (memo[n][k] > 0) return memo[n][k];
        double cur = 0;
        for (int i = n - 1; i > 0; --i) {
            cur += A[i];
            memo[n][k] = max(memo[n][k], search(i, k - 1, A) + cur / (n - i));
        }
        return memo[n][k];
    }

阅读更多
想对作者说点什么?
相关热词

博主推荐

换一批

没有更多推荐了,返回首页