Class-Aware Modality Mix and Center-Guided Metric Learning for Visible-Thermal Person Re-Id-ACMMM

1. 贡献

跨模态reid常用的方法:

(1)模态对齐:在像素以及特征层面减少跨模态之间的gap(GAN网络生成图像)

(2)模态间的度量学习:通过度量学习技术来优化跨模态的网络(主要关注于描述单个样本之间的关系,而通常忽略全局类/身份(例如,类中心)的变化。)

本文结合两种方法,贡献如下:

  • 提出了Class-aware Modality Mix (CMM):用于平滑不同模态之间的差距
  • 提出了Center-guided Metric Learning (CML):用于加强跨模态类中心和样本之间的距离约束。CML可以有效地促进模型训练,并取得显著的改进。
  • 提出了新颖的网络结构,结合(像素级)模态对齐,以及(特征级)度量学习

2. 模型

模型包括三个部分:

  • Pixel-level Class-aware Modality Mix(CMM)
  • The feature extractor
  • The optimizing losses

Class-aware Modality Mix

(1)传统Mixup方法: 

通常是对于两张图像进行线性插值,作用是:减轻过拟合的现象并且提高模型的泛化能力

  

其中,xi,xj代表任意两张图像,yi,yj代表one-hot标签,λ∈[0,1]。

该方法在传统的图像分类上效果好(图像均来自与一个模态),然而在跨模态上却表现不好,因此,提出了CMM

(2)Class-aware modality Mix

其中,xv∈visible modality, xt∈thermal modality,并且二者属于同一类别。 

CMM不需要任何参数学习,可以利用两种模式之间的内部信息来弥合跨模式的差距。

  

Loss

(1)Feature-Level KL-Divergence

目的:为了减少不同模态之间的差异,将网络不同层提取到的相同ID不同模态图像的特征使用KL散度进行约束

(2)Center-guided Metric Learning

首先需要得到每个模态,每类的类中心:

 

Nj是该模态中该类的样本数,最后得到的visible, thermal, mixed模态的类中心用:𝑐𝑗𝑣, 𝑐𝑗𝑡, 𝑐𝑗𝑚表示

  • Center-guided inter-modality constraint

   

其中L表示pair-based loss,𝑃𝑐,𝑁𝑐分布代表类中心组成的正、负样本对。

其中,正样本对是跨模态的,负样本对是同模态的

  • Center-guided intra-modality constraint

𝑃𝑠,𝑁𝑠分布代表同模态下类中心与样本组成的正、负样本对。

  • Pair mining

样本挖掘是度量学习中关键的一步,因为它决定了如何去找到训练的样本对。

首先,定义S为余弦相似度:

在训练时,pair的选取需要满足如下条件(m=0.1):

(3)Loss of CML

 

L函数可以是triplet loss也可以是MS loss,这里使用的是MS loss:

其中,C是所选择的anchors的个数

总损失函数:

 

3. 实验

对比实验

消融实验

  

其他实验

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值