相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000Sample Output
1414.2 oh!
分析:多了限制条件,只需要在循环时加上限制条件,并设一个变量记录加入边的个数,当加入的边==n-1时说明可以
代码如下:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=105;
int n,cx[N],cy[N],pre[N];
struct proc{
int from,to;
double cost;
}edge[10010];
int cmp(proc a,proc b){
return a.cost<b.cost;
}
int f(int x){
if(x==pre[x])return x;
pre[x]=f(pre[x]);
return pre[x];
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&cx[i],&cy[i]);
}
int k=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
edge[k].from=i;
edge[k].to=j;
edge[k++].cost=sqrt((double)((cx[i]-cx[j])*(cx[i]-cx[j])+(cy[i]-cy[j])*(cy[i]-cy[j])));
}
}
sort(edge,edge+k,cmp);
int flag=0;
for(int i=1;i<=n;i++)pre[i]=i;
double ans=0;
for(int i=1;i<=k;i++){
int fx=f(edge[i].from);
int fy=f(edge[i].to);
if(edge[i].cost>=10&&edge[i].cost<=1000&&fx!=fy){
pre[fx]=fy;
ans+=edge[i].cost;
flag++;
}
if(flag==m-1)break;
}
if(flag==n-1)printf("%.1f\n",ans*100);
else printf("oh!\n");
}
}