# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import tqdm
from torch.utils.tensorboard import SummaryWriter
import timm
# assert timm.__version__ == "0.3.2" # version check
from timm.models.layers import trunc_normal_
from timm.data.mixup import Mixup
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
import util.lr_decay as lrd
import util.misc as misc
from util.datasets import build_dataset
from util.pos_embed import interpolate_pos_embed
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import models_mae
import models_vit
from engine_finetune import train_one_epoch
import MyDataset
import torchvision.transforms as transforms
import utils
import torch.nn as nn
from torch.autograd import Variable
import wandb
import scipy.io as io
from utils_sig import *
def get_args_parser():
parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=20, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=0.75,
help='layer-wise lr decay from ELECTRA/BEiT')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=50, metavar='N',
help='epochs to warmup LR')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT',
help='Color jitter factor (enabled only when not using Auto/RandAug)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# * Finetuning params
parser.add_argument('--finetune', default='/home/emo/PycharmProjects/rPPG-MAE-main/pretrained_model/STMap_UBFC-100.pth',
help='finetune from checkpoint')
parser.add_argument('--global_pool', action='store_true', default= False)
# parser.set_defaults(global_pool=True)
parser.add_argument('--cls_token', action='store_false', dest='global_pool',
help='Use class token instead of global pool for classification')
# Dataset parameters
parser.add_argument('--nb_classes', default=224, type=int,
help='number of the classification types')
parser.add_argument('--output_dir', default='/home/emo/PycharmProjects/rPPG-MAE-main/finetune_log/my_UBFC_VV',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='/home/emo/PycharmProjects/rPPG-MAE-main/finetune_log/my_UBFC_VV',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--distributed', action='store_true')
parser.add_argument('--dataname', type=str, default="UBFC-PHYS", help='log and save model name')
parser.add_argument('--STMap_name1', type=str, default="STMap.png", help='log and save model name')
parser.add_argument('--STMap_name2', type=str, default="STMap_YUV_Align_CSI_CHROM.png", help='log and save model name')
parser.add_argument('-n', '--frames_num', dest='frames_num', type=int, default=224,
help='the num of frames')
parser.add_argument('-fn', '--fold_num', type=int, default=5,
help='fold_num', dest='fold_num')
parser.add_argument('-fi', '--fold_index', type=int, default=0,
help='fold_index:0-fold_num', dest='fold_index')
parser.add_argument('--log', type=str, default="supervise_VIT_VIPL_LossCrossEntropy", help='log and save model name')
parser.add_argument('--loss_type', type=str, default="rppg", help='loss type')
parser.add_argument('-rD', '--reData', dest='reData', type=int, default=0,
help='re Data')
parser.add_argument('--in_chans', type=int, default=3)
parser.add_argument('--semi', type=str, default='')
return parser
def main(args):
# misc.init_distributed_mode(args)
if args.dataname=='VIPL':
fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/VIPL_new' # change to your own path.
# saveRoot = r'/scratch/project_2006419/data/VIPL_Index/fs_VIPL_STMap' + str(args.fold_num) + str(args.fold_index) # change to your own path.
saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/VIPL_finetune' # change to your own path.
if args.dataname=='PURE':
fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/PURE' # change to your own path.
saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/PURE_finetune' # change to your own path.
if args.dataname=='UBFC':
fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/UBFC-rPPG' # change to your own path.
saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/UBFC_finetune' # change to your own path.
if args.dataname == 'UBFC-PHYS':
fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/UBFC-PHYS' # change to your own path.
saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/UBFC-PHYS_Train' # change to your own path.
if args.dataname == 'VV':
fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/VV' # change to your own path.
saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/VV_finetune' # change to your own path.
if args.dataname == 'V4V':
fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/V4V' # change to your own path.
saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/V4V_finetune' # change to your own path.
# wandb.init(project='rppg-mae'+ args.dataname)
# wandb.config = {
# "epochs": args.epochs,
# "batch_size": args.batch_size
# }
best_mae = 20
frames_num = args.frames_num
dataname = args.dataname
fold_num = args.fold_num
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
toTensor = transforms.ToTensor()
# resize = transforms.Resize(size=(64, frames_num))
resize = transforms.Resize(size=(frames_num, frames_num))
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# device = 'cpu'
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# 数据集
if args.reData == 1:
if args.semi:
test_index, train_index, semi_withlabel_index, semi_withoutlabel_index = MyDataset.CrossValidation_semi(
fileRoot, fold_num, fold_index=0, semi=2, semi_index=0)
semi_with = MyDataset.getIndex(fileRoot, semi_withlabel_index, saveRoot + '_1Train50%', 'STMap.png', 5,
frames_num)
semi_without = MyDataset.getIndex(fileRoot, semi_withoutlabel_index, saveRoot + '_2Train50%', 'STMap.png',
5, frames_num)
else:
test_index, train_index = MyDataset.CrossValidation(fileRoot, fold_num=5, fold_index=0)
Train_Indexa = MyDataset.getIndex(fileRoot, train_index, saveRoot + '_Train', 'STMap.png', 5, frames_num)
Test_Indexa = MyDataset.getIndex(fileRoot, test_index, saveRoot + '_Test', 'STMap.png', 5, frames_num)
if args.semi:
dataset_train = MyDataset.Data_DG(root_dir=(saveRoot + '_Train' + args.semi), dataName=dataname,
STMap1=args.STMap_name1, STMap2=args.STMap_name2, \
in_chans=args.in_chans, frames_num=frames_num,
transform=transforms.Compose([resize, toTensor, normalize]))
dataset_val = MyDataset.Data_DG(root_dir=(saveRoot + '_Test'), dataName=dataname, STMap1=args.STMap_name1,
STMap2=args.STMap_name2, \
in_chans=args.in_chans, frames_num=frames_num,
transform=transforms.Compose([resize, toTensor, normalize]))
else:
dataset_train = MyDataset.Data_DG(root_dir=(saveRoot + '_Train'), dataName=dataname, STMap1=args.STMap_name1,
STMap2=args.STMap_name2, \
in_chans=args.in_chans, frames_num=frames_num,
transform=transforms.Compose([resize, toTensor, normalize]))
dataset_val = MyDataset.Data_DG(root_dir=(saveRoot + '_Test'), dataName=dataname, STMap1=args.STMap_name1,
STMap2=args.STMap_name2, \
in_chans=args.in_chans, frames_num=frames_num,
transform=transforms.Compose([resize, toTensor, normalize]))
print('trainLen:', len(dataset_train), 'testLen:', len(dataset_val))
print('fold_num:', args.fold_num, 'fold_index', args.fold_index)
if args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank,
shuffle=True) # shuffle=True to reduce monitor bias
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
model = models_vit.__dict__[args.model](
num_classes=args.nb_classes,
drop_path_rate=args.drop_path,
global_pool=args.global_pool,
in_chans=args.in_chans
)
if args.finetune:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load pre-trained checkpoint from: %s" % args.finetune)
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
interpolate_pos_embed(model, checkpoint_model)
# load pre-trained model
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
if args.global_pool:
assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'}
else:
assert set(msg.missing_keys) == {'head.weight', 'head.bias'}
# manually initialize fc layer
trunc_normal_(model.head.weight, std=2e-5)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params (M): %.2f' % (n_parameters / 1.e6))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
# build optimizer with layer-wise lr decay (lrd)
param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay,
no_weight_decay_list=model_without_ddp.no_weight_decay(),
layer_decay=args.layer_decay
)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr)
loss_scaler = NativeScaler()
if mixup_fn is not None:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
print("criterion = %s" % str(criterion))
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
# for epoch in tqdm.tqdm(range(args.start_epoch, args.epochs)):
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, mixup_fn,
log_writer=log_writer,
args=args
)
if args.output_dir:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
# test
# model.eval()
# HR_pr_temp = [] # 测试集所有预测心率
# HR_rel_temp = []
# for step, (data1, bvp, _) in enumerate(data_loader_val):
# # data = Variable(data).float().to(device=device)
# data1 = Variable(data1).float().to(device=device)
# # data2 = Variable(data2).float().to(device=device)
# bvp = Variable(bvp).float().to(device=device)
# # HR_rel = Variable(HR_rel).float().to(device=device)
# Wave = bvp.unsqueeze(dim=1)
# STMap = data1[:, :, :, 0:frames_num]
# Wave = Wave[:, :, 0:frames_num]
# b, _, _ = Wave.size()
#
# outputs = model(data1) # [B,220]
# if args.loss_type == 'rppg':
# loss_func_rPPG = utils.P_loss3().to(device)
# loss_func_SP = utils.SP_loss(device, low_bound=36, high_bound=240, clip_length=args.frames_num).to(
# device)
# _, hr_pr = loss_func_SP(outputs.unsqueeze(dim=1), HR_rel)
# _, hr_rel = loss_func_SP(Wave, HR_rel)
# loss = loss_func_rPPG(outputs.unsqueeze(dim=1), Wave)
# HR_pr_temp.extend(hr_pr.data.cpu().numpy())
# HR_rel_temp.extend(hr_rel.data.cpu().numpy())
# if args.loss_type == 'SP':
# loss_func_SP = utils.SP_loss(device, low_bound=36, high_bound=240, clip_length=args.frames_num).to(
# device)
# loss, hr_pre = loss_func_SP(outputs.unsqueeze(dim=1), HR_rel)
# HR_pr_temp.extend(hr_pre.data.cpu().numpy())
# HR_rel_temp.extend(HR_rel.data.cpu().numpy())
# print('loss_test: ', loss)
# ME, STD, MAE, RMSE, MER, P = utils.MyEval(HR_pr_temp, HR_rel_temp)
# wandb.log({"MAE": MAE, 'epoch': epoch})
# if best_mae > MAE:
# best_mae = MAE
# io.savemat(args.log + '/' + 'HR_pr.mat', {'HR_pr': HR_pr_temp}) # 训练结束后保存着所有EPOCHE里效果最好的预测心率
# io.savemat(args.log + '/' + 'HR_rel.mat', {'HR_rel': HR_rel_temp}) # 保存效果最好的真实心率
# print('save best predict HR')
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
# **{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
args.decoder_embed_dim = 128
args.decoder_depth = 8
args.norm_pix_loss = False
args.reData = 0
# args.output_dir = '/media/emo/WD_5T/UBFC/UBFC-phys/rppg-mae_log'
# args.log_dir = '/media/emo/WD_5T/UBFC/UBFC-phys/rppg-mae_log'
args.finetune = '/home/emo/PycharmProjects/rPPG-MAE-main/pretrained_model/STMap_UBFC-100.pth'
# args.finetune = '/home/emo/PycharmProjects/rPPG-MAE-main/pretrained_model/STMap_PURE-100.pth'
# args.finetune = '/home/emo/PycharmProjects/rPPG-MAE-main/pretrained_model/PC-STMap_VIPL-399.pth'
# args.in_chans = 6 #torch.Size([768, 6, 16, 16]) from checkpoint PC-STMap_VIPL-399.pth
args.epochs = 200
args.dataname = 'VV'
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
这个是生成checkpoints.pth文件的代码
最新发布