【干货】认知智能时代:知识图谱实践案例集.pdf(附下载链接)

大家好,我是文文(微信号:sscbg2020),今天给大家分享中国电子技术标准化研究院于2021年1月份发布的干货报告《认知智能时代:知识图谱实践案例集.pdf》,关注知识图谱及人工智能伙伴们别错过了!

知识图谱作为机器认知智能实现的基础之一,是人工智能的重要组成部分,有助于实现自动化和智能化获取、挖掘和应用 知识,获得了产业界和学术界的广泛关注。知识图谱是以结构化的形式描述客观世界中的概念、实体及其关系的大型知识网络, 将信息表达成更接近人类认知的形式,提供了一种更好地组织、管理和理解海量信息的能力。在政策部署、技术研发、标准研 制、产业化推广、前沿应用场景试点等多方面因素的共同驱动下,知识图谱逐渐实现在智慧医疗、智慧能源、智能制造、智慧 金融等众多领域的落地应用和深度融合,同时在各行业的数字化转型过程中,跨领域、行业或产业的知识图谱也逐渐获得关注。

本报告共207页,已收录到小程序省时查报告中,大家可以到省时查报告小程序中查看并下载(点击小程序报告详情页下方的菜单-复制下载链接即可)文档全文。

更多细节和相关报告请到小程序省时查报告中查看全文并下载。欢迎大家把小程序分享给身边更多有需要的朋友们,分享一个好友可以获得2天的VIP,上不封顶哦。真爱粉可以点击公众号下方的菜单“开通VIP”来开通会员~

「 更多干货,更多收获 」

2021年2月热门报告盘点(附下载链接)
华为还能存活吗?
2020年轻人性和爱调查报告.pdf
用户画像和精准化平台系统实践.pdf
2021小红书电商直播趋势报告.pdf
推荐系统解构.pdf
关注我们

省时查报告

专业、及时、全面的行研报告库

长按并识别关注

你的「在看」,我的动力????

  • 2
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

8.5 基于案例的推理 k-近邻算法和局部加权回归都是基于实例的方法,它们具有三个共同的关键特性。第 1, 它们是消极学习方法,都把在训练数据上的泛化推迟至遇到一个新的查询实例时。第 2,它 们通过分析相似的实例来分类新的查询实例,而忽略与查询极其不同的实例。第 3,它们把 实例表示为 n维欧氏空间中的实数点。基于案例的推理(Case-based reasoning,CBR)这种 学习范型基于前两个原则,但不包括第 3个。在 CBR中,一般使用更丰富的符号描述来表 示实例;相应地,用来检索实例的方法也更加复杂。CBR已被应用于解决很多问题,比如, 根据数据库中存储的以前的设计图纸,来进行机械设备的总体设计(Sycara et al. 1992);根 据以前的裁决来对新的法律案件进行推理(Ashley 1990);通过对以前的相似问题的解决方 案的复用或合并,来解决规划和调度问题(Veloso 1992)。 作为以后讨论的基础,让我们考虑基于案例的推理系统的一个例子。CADET 系统 (Sycara et al. 1992)采用基于案例的推理来辅助简单机械设备(例如水龙头)的总体设计。 它使用一个数据库,其中包含约 75个以前的设计或设计片断,来推荐符合新的设计规格 的总体设计。内存中每一个实例是通过它的结构和定性的功能来表示的。相应的,新的设计 问题是通过所要求的功能和结构来表示的。图 8-3画出了这个问题。图的上半部分显示了一 个典型的存储案例,被称为 T 型接头管。它的功能被表示为输入和输出点的流量和温度间 的定性关系。在右侧的功能描述中,标有“+”的箭头表明箭头头部的变量随着箭头尾部的 变量上升。例如,输出流量 Q3随着输入流量 Q1增长。类似地,“-”标记表明箭头头部的变 量随着箭头尾部的变量下降。这幅图的下半部分画出了一个新的设计问题,它通过新设计中 所要求的功能来描述。这个功能描绘了一种水龙头的行为特征。这里 Qc指进入龙头的冷水 流量,Qh指热水的输入流量,Qm指流出龙头的单一混合流量。类似地,Tc、Th和 Tm分别指
第8章 基于实例的学习 已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述; 但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。从这些实例中 泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它 分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。 基于实例的学习方法包括最近邻(nearest neighbor)法和局部加权回归(locally weighted regression)法,它们都假定实例可以被表示为欧氏空间中的点。基于实 例的学习方法还包括基于案例的推理(case-based reasoning),它对实例采用更 复杂的符号表示。基于实例的学习方法有时被称为消极(lazy)学习法,因为它们 把处理工作延迟到必须分类新的实例时。这种延迟的或消极的学习方法有一个关键 的优点,即它们不是在整个实例空间上一次性地估计目标函数,而是针对每个待分 类新实例作出局部的和相异的估计。 8.1 简介 基于实例的学习方法中,最近邻法和局部加权回归法用于逼近实值或离散目标函数,它 们在概念上都很简明。对于这些算法,学习过程只是简单地存储已知的训练数据。当遇到新 的查询实例时,一系列相似的实例被从存储器中取出,并用来分类新的查询实例。这些方法 与其他章讨论的方法相比,一个关键差异是:基于实例的方法可以为不同的待分类查询实例 建立不同的目标函数逼近。事实上,很多技术只建立目标函数的局部逼近,将其应用于与新 查询实例邻近的实例,而从不建立在整个实例空间上都表现良好的逼近。当目标函数很复杂, 但它可用不太复杂的局部逼近描述时,这样做有显著的优势。 基于实例的方法也可以使用更复杂的符号表示法来描述实例。在基于案例的学习中,实 例即以这种方式表示,而且也按照这种方式来确定邻近实例。基于案例的推理已经被应用到 很多任务中,比如,在咨询台上存储和复用过去的经验;根据以前的法律案件进行推理;通 过复用以前求解的问题的相关部分来解决复杂的调度问题。 基于实例方法的一个不足是,分类新实例的开销可能很。这是因为几乎所有的计算都 发生在分类时,而不是在第一次遇到训练样例时。所以,如何有效地索引训练样例,以减少 查询时所需计算是一个重要的实践问题。此类方法的第二个不足是(尤其对于最近邻法), 当从存储器中检索相似的训练样例时,它们一般考虑实例的所有属性。如果目标概念仅依赖 于很多属性中的几个时,那么真正最“相似”的实例之间很可能相距甚远。 在下一节我们将介绍 k-近邻(k-Nearest Neighbor)法,以及这个广泛应用的方法的几个 变体。在此之后我们将讨论局部加权回归法,一种建立目标函数的局部逼近的学习方法,这 种方法可以被看作 k-近邻法的一般形式。然后我们描述径向基函数(radial basis function) 网络,这种网络为基于实例的学习算法和神经网络学习算法提供了一个有趣的桥梁。再下一 节讨论基于案例的推理,一种使用符号表示和基于知识的推理(knowledge-based inference) 的方法。这一节包括了一个基于案例的推理应用实例,用于解决工程设计问题。最后,我们
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值