用python玩微信跳一跳系列-色块轮廓定位棋盘

标签: python 微信 游戏
399人阅读 评论(0) 收藏 举报
分类:

在前几篇博文中,我们分别采用颜色识别,模板匹配,像素遍历等方法实现了棋子和棋盘的定位,具体内容可以参见我的前面的文章内容,在这一篇中,我们来探索一种定位棋盘的新方法。
分析
经过观察,我们看到,无论什么情况下,棋盘和背景之间总是存在着非常明显的色彩对比,这当然是必须的,否则玩游戏的人都无法分辨棋子、棋盘、背景,这个游戏就不可能大火。显然,如果我们将每一幅画面进行色块分割,将彩色图转变为黑白二值图,就可以将背景和棋盘隔离出来,然后对黑白图中的白色轮廓进行分析,将其中位置最高(y值最小)的轮廓标记出来,这个轮廓就是下一步要跳一跳的棋盘。
步骤

  1. 抓取图像;
  2. 将图像转变为灰度图;
  3. 确定工作区域(h//3–2h//3),确定像素阈值;
  4. 产生黑白二值图像,同时产生两种黑白图,分别将亮于背景和暗于背景两种情况下的色块隔离出来;
    阴影的处理
    棋盘往往会有阴影,可以通过进一步缩小目标区域进行色块分割的方法来精准实现定位,感兴趣的同学可以自行练习。
    代码
# -*- coding: utf-8 -*-
#VS2017+python3.6+opencv3.4
#2018.02.03
#作者:艾克思

import cv2  

def thresh(img):
    x1,y1,w1,h1,x2,y2,w2,h2=0,0,0,0,0,0,0,0
    gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    #gray=cv2.GaussianBlur(gray,(13,13),0)  #高斯模糊
    h0,w0=img.shape[:2]
    top=gray[h0//3,10]
    bottom= gray[h0*2//3,10]

    thresh1 = cv2.threshold(gray,top,255, cv2.THRESH_BINARY)[1] 
    thresh2 = cv2.threshold(gray,bottom,255, cv2.THRESH_BINARY_INV)[1]  
    img1=thresh1[h0//3:h0*2//3,0:w0]
    img2=thresh2[h0//3:h0*2//3,0:w0]

    cnts1, hierarchy1, rr1 = cv2.findContours(img1,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    cnts2, hierarchy2, rr2 = cv2.findContours(img2,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

    aim1=0
    y_min=h0//3
    for c in hierarchy1:
        if hierarchy1==None:
            x1,y1,w1,h1=w0//2,h0//3,w0//3,h0//3
            break
        else:
            x,y,w,h = cv2.boundingRect(c)
            if y<=y_min:
                y_min=y
                aim1=c
            x1,y1,w1,h1 = cv2.boundingRect(aim1)
    cv2.rectangle(img,(x1,y1+h0//3),(x1+w1,y1+h1+h0//3),(255,0,0),2)

    aim2=0
    y_min=h0//3
    for c in hierarchy2:
        if hierarchy2==None:
            x2,y2,w2,h2=w0//2,h0//3,w0//3,h0//3
            break
        else:
            x,y,w,h = cv2.boundingRect(c)
            if y<=y_min:
                y_min=y
                aim2=c
            x2,y2,w2,h2 = cv2.boundingRect(aim2)
    cv2.rectangle(img,(x2,y2+h0//3),(x2+w2,y2+h2+h0//3),(0,255,0),2)

    if y1+h1//2<=y2+h2//2:
        x,y,w,h=x1,y1,w1,h1
    else: x,y,w,h=x2,y2,w2,h2

    cv2.imshow('img1',thresh1)
    cv2.imshow('img2',thresh2) 

    return (x+w//2,y+h0//3+h//2)

def main():
    video='jump.avi'
    cap = cv2.VideoCapture(video)  
    ret=cap.isOpened()
    ret=True
    while ret:
        #ret,img=cap.read()  #读入帧
        img=cv2.imread('e:/python/jump/hsv/006.png')
        if not ret:cv2.waitKey(0)
        point=thresh(img)
        cv2.circle(img,point,3,(0,0,255),-1)
        cv2.circle(img,point,15,(0,0,255),2)

        cv2.imshow('img',img)
        if cv2.waitKey(25)==ord('q'): break
    cap.release()
    cv2.destroyAllWindows()

if __name__=='__main__':
    main()

opencv中关于黑白二值分割的参数类型如下:
这里写图片描述
在代码编制时,需要将cv2.THRESH_BINARY和cv2.THRESH_BINARY_INV联合使用,以便同时分辨亮色和暗色。
效果
​我们放几张棋盘识别的样例,共大家参考。
这里写图片描述
这是一张比较典型的样例图,棋盘上半部分为暗色,下半部分为亮色,第一张是亮色部分的分割识别,第二张是暗色部分的分割识别,最后分别绘出各自识别出的色块轮廓,并进行比较。这张样例中,最终识别出的位置在棋盘的中心白点上,效果还是非常好的。
这里写图片描述
这也是一张非常典型的样例图,棋盘亮暗部分相互交错,左边图识别出了亮色部分,中间图识别出了暗色部分,最终的比较结果也在棋盘的正中心,效果不错。
这里写图片描述
这张样例也将最终的位置锁定在棋盘中心点。
再放一张。
这里写图片描述
这也是一张比较典型的情况,最终定位在棋盘的中心白点处,方法可行。

查看评论

opencv学习_10 (图像和轮廓的匹配(hu矩))

图像和轮廓的匹配(hu矩)  (1)hu矩的概念,我也总结了但是我不过多的阐述,因为我也不是太理解,只知道它具有平移,旋转,尺度不变性,详细见别人的这篇 blog:http://blog.csdn.n...
  • Lu597203933
  • Lu597203933
  • 2013-11-08 20:07:33
  • 18849

Python3与OpenCV3.3 图像处理(二十一)--轮廓发现

一、什么是轮廓发现 是基于图像边缘提取的基础,寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓的发现 二、轮廓发现API findContours 发现轮廓 drawContours绘...
  • gangzhucoll
  • gangzhucoll
  • 2017-12-21 23:02:56
  • 614

python opencv入门 更多关于轮廓的函数(20)

内容来自OpenCV-Python Tutorials 自己翻译整理目标 如何找到凸缺陷 某一点到多边形的最短距离 不同形状匹配凸缺陷在目标图形上的任何凹陷都可以被看作凸缺陷,在Opencv中有...
  • tengfei461807914
  • tengfei461807914
  • 2017-08-05 10:47:14
  • 1095

基于Python3.6和Opencv3的活动轮廓模型--CV模型

  • 2017年12月01日 18:12
  • 6KB
  • 下载

python opencv入门 轮廓的性质(19)

内容来自OpenCV-Python Tutorials 自己翻译整理长宽比: 边界矩形的宽高比 AspectRation=WidthHeightAspectRation = \frac{Width...
  • tengfei461807914
  • tengfei461807914
  • 2017-08-04 11:17:41
  • 602

Opencv(Python) 教程-轮廓(2)轮廓特征求取

目标 查找轮廓的不同特征,例如面积,周长,重心,边界框等,这些特征在未来的图像识别中,会大量的用到。 矩的概念 图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(图像描述量)来...
  • jjddss
  • jjddss
  • 2017-06-20 09:46:21
  • 4448

Opencv(Python) 教程-轮廓(3)轮廓的性质

Opencv(Python) 教程-轮廓(3)轮廓的性质边界矩形的宽高比在上一小节中,我们提到利用下面函数能够得到轮廓的直边界矩形 x,y,w,h = cv2.boundingRect(cnt) ...
  • jjddss
  • jjddss
  • 2017-06-21 10:13:08
  • 1062

图像和轮廓的匹配(hu矩)

(1)hu矩的概念,我也总结了但是我不过多的阐述,因为我也不是太理解,只知道它具有平移,旋转,尺度不变性,详细见别人的这篇blog:http://blog.csdn.net/wrj19860202/a...
  • qq_30050303
  • qq_30050303
  • 2016-06-01 09:53:07
  • 2398

python-opencv-轮廓检测

轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线。检测轮廓的工作对形状分析和物体检测与识别都非常有用。 在轮廓检测之前,首先要对图片进行二值化或者Canny边缘检测。在O...
  • chaihuimin
  • chaihuimin
  • 2017-04-22 22:31:55
  • 1104

python OpenCV学习笔记(十九):更多有关轮廓的函数

官方文档 – https://docs.opencv.org/3.4.0/d5/d45/tutorial_py_contours_more_functions.html 凸性缺陷 任何对物...
  • JS_XH
  • JS_XH
  • 2018-02-03 15:44:44
  • 45
    个人资料
    持之以恒
    等级:
    访问量: 2万+
    积分: 968
    排名: 5万+
    文章存档
    最新评论