# [LightOJ](1236)Pairs Forming LCM ---- 唯一分解定理（质因数分解）

Find the result of the following code:

long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}

A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).

## Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1e14).

## Output

For each case, print the case number and the value returned by the function ‘pairsFormLCM(n)’.

15
2
3
4
6
8
10
12
15
18
20
21
24
25
27
29

## Sample Output

Case 1: 2
Case 2: 2
Case 3: 3
Case 4: 5
Case 5: 4
Case 6: 5
Case 7: 8
Case 8: 5
Case 9: 8
Case 10: 8
Case 11: 5
Case 12: 11
Case 13: 3
Case 14: 4
Case 15: 2

https://www.cnblogs.com/linliu/p/5549544.html

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1e7+1000;
const int MAXN = 1e3+5;
bool p[maxn];
int prime[maxn/10];
int a[MAXN];
int b[MAXN];
int tot;
int num;
void Init()
{
tot = 0;
memset(p,true,sizeof(p));
p[0] = p[1] = false;
for(LL i=2;i<maxn;i++)
{
if(p[i]){
prime[tot++] = i;
for(LL j=i*i;j<maxn;j+=i) p[j] = false;
}
}
}
void dec(LL x)
{
num = 0;
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=0;1LL*prime[i]*prime[i]<=x;i++)
{
if(x%prime[i] == 0){
a[num] = prime[i];
while(x%prime[i] == 0)
{
b[num]++;
x/=prime[i];
}
num++;
}
}
if(x!=1){
a[num] = x;
b[num] = 1;
num++;
}
}
int main()
{
#ifdef LOCAL_FILE
freopen("in.txt","r",stdin);
#endif
//    ios_base::sync_with_stdio(false);
//    cin.tie(NULL),cout.tie(NULL);
int t;
int id = 1;
scanf("%d",&t);
Init();
while(t--)
{
LL n;
scanf("%lld",&n);
dec(n);
LL ans = 1;
for(int i=0;i<num;i++)
ans*=(2*b[i]+1);
ans = ans/2+1;
printf("Case %d: %lld\n",id++,ans);
}
return 0;
}