Codeforces Round #454 (Div. 1) D. Power Tower ---- 广义欧拉定理降幂★

公式:

注意:比较大小以及使用map记忆化欧拉函数值,否则会WA or TLE

  • 自定义Mod,这种写法,会在快速幂中自行判断大小,比较无脑

AC代码:

#include<bits/stdc++.h>
#define IO          ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#define pb(x)       push_back(x)
#define sz(x)       (int)(x).size()
#define sc(x)       scanf("%d",&x)
#define pr(x)       printf("%d\n",x)
#define abs(x)      ((x)<0 ? -(x) : x)
#define Mod(a,b)    a>=b ?(a%b+b):a //根据欧拉降幂公式定义
#define all(x)      x.begin(),x.end()
#define mk(x,y)     make_pair(x,y)
#define debug       printf("!!!!!!\n")
#define fin         freopen("in.txt","r",stdin)
#define fout        freopen("out.txt","w",stdout)
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int mod = 1e9+7;
const double PI = 4*atan(1.0);
const int maxm = 1e8+5;
const int maxn = 1e5+5;
const int INF = 0x3f3f3f3f;
const ll LINF = 1ll<<62;
map<ll,ll> mp;
ll a[maxn];
inline ll phi(ll x)
{
    ll ans = x,tmp = x;
    if(mp.count(x)) return mp[x]; //记忆化
    for(int i=2;i*i<=x;i++)
    {
        if(x%i == 0){
            ans = ans/i*(i-1);
            while(x%i == 0) x/=i;
        }
    }
    if(x>1) ans = ans/x*(x-1);
    mp[tmp] = ans;
    return ans;
}
inline ll qpow(ll a,ll b,ll m)
{
    ll res = 1;
    while(b){
        if(1&b) res = Mod(res*a,m);//!!!
        a = Mod(a*a,m);//!!!
        b>>=1;
    }
    return res;
}
ll solve(ll index,ll r,ll m)
{
    if(index == r || m == 1) return Mod(a[index],m);
    else return qpow(a[index],solve(index+1,r,phi(m)),m);
}
int main()
{
    // fin;
    ll n,m,q;
    scanf("%I64d %I64d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
    scanf("%I64d",&q);
    while(q--)
    {
        int l,r;
        scanf("%d %d",&l,&r);
        printf("%I64d\n",solve(l,r,m)%m);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值