欧拉函数广义降幂

https://www.luogu.org/problem/P5091 

 

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<vector>
#include<cmath>
#include<string>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
ll a,c;
//欧拉函数直接法,复杂度=根n 
ll eular(ll n){
	ll m=n;
	for(ll i=2;i*i<=n;i++){
		if(n%i==0){//i一定为质因子 
			m-=m/i;//有公式eular(m)=m*(1-1/p1)*(1-1/p2)*...*(1-1/pn);其中pi是m的质因子 
			while(n%i==0){
				n/=i;//将该质因子约掉,确保接下来找到的因子为质因子 
			}
		}
	}
	if(n>1){//如果n约掉质因子后还不为1,这说明现在的n是原来n的一个质因子 
		m-=m/n;
	}
	return m;
}
//快速幂 
ll quick(ll x,ll b,ll mod){
	ll ans=1;
	while(b){
		if(b&1){
			ans=(ans*x)%mod;
		}
		b>>=1;
		x=(x*x)%mod;
	}
	return ans;
}
ll chushu,sum;
char s[20000001];
//注意,下面读指数的时候不能一位一位的读,超时 
ll read(){
	scanf("%lld %lld %s",&a,&c,s);
	chushu=eular(c);//c的欧拉函数 
	sum=0;
	ll mod=0;
	ll len=strlen(s);
	for(ll i=0;i<len;i++){
		if(sum<=chushu){//用sum判断指数b和c的欧拉函数的大小 
			sum=sum*10+s[i]-'0';
		}
		mod=(mod*10+s[i]-'0')%chushu;
	}
	return mod;
}

int main(){
	ll x=read();
	if(sum>chushu){
		x+=chushu;//符合降幂公式 
	}
	else if(sum==chushu){
		x=sum;//不符合降幂公式,但sum正好是指数b的值 
	}
	//否则sum<chushu,得出的模就是指数b的本身 
	ll ans=quick(a,x,c);
	printf("%lld\n",ans);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值