Algorithm-week5

Week5

Program--Medium--611. Valid Triangle Number

Given an array consists of non-negative integers, your task is to count the number of triplets chosen from the array that can make triangles if we take them as side lengths of a triangle.

Example 1:

Input: [2,2,3,4]
Output: 3
Explanation:
Valid combinations are: 
2,3,4 (using the first 2)
2,3,4 (using the second 2)
2,2,3

Note:

  1. The length of the given array won't exceed 1000.
  2. The integers in the given array are in the range of [0, 1000].

题目解析:

这是一个简单的匹配问题,如果时间允许的话,用一个三重循环即可解决,再用三角形判定定理“任意一边都小于其余两边之和”来进行判定即可。

代码:

class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        int count = 0;
        if (nums.size() < 3) {
            return 0;
        }

        for (int i = 0; i < nums.size() - 2; i++) {
            if (nums[i] <= 0) {
                continue;
            }
            for (int j = i + 1; j < nums.size() - 1; j++) {
                if (nums[j] <= 0) {
                    continue;
                }
                for (int k = j + 1; k < nums.size(); k++) {
                    if (nums[k] <= 0) {
                        continue;
                    }
                    if (isTriangle(nums[i], nums[j], nums[k])) {
                        count++;
                    }
                }
            }
        }
        return count;
    }
    
    bool isTriangle(int a, int b, int c) {
        if (a+b>c&&b+c>a&&c+a>b) {
            return true;
        } else {
            return false;
        }
    }
};

优化算法:

通过观察,我们可以知道,在一个有序序列num中,设i = start, k = end, j = end - 1。
1.如果(1)num[i] + num[j] > num[k],那么对于i = start+1——end-2,num[i] + num[j] > num[k]也成立,而且显然num[j] + num[k] > num[i],num[i] + num[k] > num[j]。所以,所有位于i——j-1共(j-i)个数的数与num[j],num[k]也可以构成三角形,相当于减少了一层确定最小值的遍历循环。然后j--,使得(1)式左边变小,看是否还符合。
2.如果条件不成立,证明(1)左边太小,因此i++,增加左边的值,继续判断。

上诉步骤是内层循环,用于两个较小值的确定,最外层循环则是第三个数最大数的确定,这样,算法复杂度就有O(N^3)变为O(N^2)。

代码:

class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int count = 0;
        for (int k = nums.size() - 1; k > 1; k--) {
            int i = 0, j = k - 1;
            while(i < j) {
                if (nums[i] + nums[j] > nums[k]) {
                    j--;
                    count += j - i + 1;
                } else {
                    i++;
                }
            }
        }
        return count;
    }
    
};







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值