Ubuntu,配置DetectAndTrack。

Table of Contents

一、项目地址

二、要求

三、安装

四、数据集与评价

**注意**:

五、运行

六、已知问题:

ubuntu 上的问题分享:


一、项目地址

[github]     [project page]

[paper]Girdhar R, Gkioxari G, Torresani L, et al. Detect-and-Track: Efficient Pose Estimation in Videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 350-359.

推荐看下https://www.bilibili.com/video/av31977792?from=search&seid=5301881634338513872任少卿-From Faster R-CNN to Mask R-CNN的视频

该项目是基于初始版本的 Detectron代码做的。

关于github解决慢的情况: git clone的问题.

二、要求

大多数配置至少需要4个GPU,有些还需要8个GPU。可以通过缩小学习速度和扩大迭代时间来在单个GPU上进行训练,可以在单个GPU上进行测试。不可在CPU上运行。

三、安装

建议用annaconda,它安装 caffe2 and other ops比较简便些.下载项目: 

```bash
$ git clone https://github.com/facebookresearch/DetectAndTrack.git
$ cd DetectAndTrack
```
  • 先决条件和软件设置(加黑为必须,nccl装caffe2时候也装一下) 

The code was tested with the following setup:

0. CentOS 6.5/ubuntu
1. Anaconda (python 2.7)
2. OpenCV 3.4.1
3. GCC 4.9
4. CUDA 9.0//我是CUDA 8.0
5. cuDNN 7.1.2cmake版本最低要求 3.2
6. numpy 1.14.2 (needs >=1.12.1, for the [poseval]evaluation scripts)

7. cmake>= 3.2

也就是需要安装[poseval]evaluation scripts

  • [`all_pkg_versions.txt`]包含应该使用此代码的软件包的确切版本。 为了避免冲突包,建议在conda中创建一个新环境,并在那里安装所有需求。 它可以通过以下方式完成:可查看conda虚拟环境。如果根据作者的指令会出现错误(见末尾已知错误)。
    ```bash
    $ export ENV_NAME="detect_and_track"  # or any other name you prefer
    $ conda create --name $ENV_NAME --file /home/vivian/HelloWorld/tracker/DetectAndTrack/all_pkg_versions.txt python=2.7 anaconda  #你的地址
    $ source activate $ENV_NAME
    ```
    #一些指令
    1.查看已建好的环境
    conda info --envs
    
    2.对虚拟环境中安装额外的包。 即可安装package到your_env_name中
    conda install -n your_env_name [package] 
    #例如numpy :
    conda install --name detect_and_track numpy
    #也可以激活虚拟环境后,直接conda install numpy
    
    4.激活或停用
    # To activate this environment, use
    $ conda activate detect_and_track
    $ source activate detect_and_trac
    $ source activate $ENV_NAME  (也可以)
    # To deactivate an active environment, use
    #     $ source deactivate
    #     $ conda deactivate
    5.复制虚拟环境(在detect_and_track安装caffe2后,怕出新的错误 先复制个新环境.但pip安装的包不会复制)
    conda create -n caffe2 --clone detect_and_track

    还有个参考安装方法:$ conda create --name $ENV_NAME --file all_pkg_versions.txt python=2.7 anaconda -c conda-forge

1) Ubuntu14.04配置caffe2,及问题解决

2) Ubuntu14.04配置Detectron,及问题解决

  • [ COCO API ] 用COCO API读取 train/test文件,要把cocoapi的路径放进环境变量???
```bash
$ # COCOAPI=/path/to/clone/cocoapi
$ git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
$ cd $COCOAPI/PythonAPI
$ # Install into global site-packages
$ make install
$ # Alternatively, if you do not have permissions or prefer
$ # not to install the COCO API into global site-packages
$ python2 setup.py install --user
```

执行import pycocotools和from pycocotools.coco import COCO命令不报错说明已经安装成功了 

  • 编译自定义操作(detectron ops,)

需要一个额外的OP(以`lib/ops/affine_channel_nd_op.*`的形式提供)来运行3D模型,[安装说明]

方法①:因为之前txt文件安装了依赖了,直接到项目目录下执行安装就好.可能会出现protoc版本新旧等等的问题,

如果没问题就算了,不然安装前最好改一下cmakelist.txt文件.Ubuntu14.04配置Detectron,及问题解决

```bash
$ cd ../DetectAndTrack/lib   #这里看出来caffe2是和detectandtrack同级的,你可以改成自己的绝对路径
$ make && make ops
$ cd ..
$ python tests/test_zero_even_op.py  # test that compilation worked
```

方法:将`lib/Ops/affine_Channel_nd_op.*‘文件复制到(`caffe2/modules/detectron/`),并重新编译caffe2。这也将使caffe2可以增加OP,编译caffe2。将使caffe2增加OP。pytorch/modules/detectron/

方法③:阅读 [FAQ]。然后为构建自定义操作符(building custom operators)提供cmake支持。所有自定义操作符都内置到一个库中,该库可以从python动态加载。将custom operator implementation放在detectron/ops/ 下,示例:

# DETECTRON=/path/to/clone/detectron
git clone https://github.com/facebookresearch/detectron $DETECTRON

#Install Python dependencies:
pip install -r $DETECTRON/requirements.txt

#Set up Python modules:# 构建自定义操作符库:
cd $DETECTRON && make

#Check that Detectron tests pass (e.g. for SpatialNarrowAsOp test):
python $DETECTRON/detectron/tests/test_spatial_narrow_as_op.py
#我用的下面指令
git clone https://github.com/facebookresearch/detectron $DETECTRON
pip install -r detectron/requirements.txt
cd detectron && make
python detectron/tests/test_spatial_narrow_as_op.py
detectron$ python detectron/tests/test_spatial_narrow_as_op.py
[E init_intrinsics_check.cc:43] CPU feature avx is present on your machine, but the Caffe2 binary is not compiled with it. It means you may not get the full speed of your CPU.
[E init_intrinsics_check.cc:43] CPU feature avx2 is present on your machine, but the Caffe2 binary is not compiled with it. It means you may not get the full speed of your CPU.
[E init_intrinsics_check.cc:43] CPU feature fma is present on your machine, but the Caffe2 binary is not compiled with it. It means you may not get the full speed of your CPU.
Found Detectr
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>