自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(379)
  • 资源 (73)
  • 收藏
  • 关注

原创 【目标跟踪】Yolov5_DeepSort_Pytorch训练自己的数据

1.环境ubuntu16.04cuda10.1cudnn7python3.6 Cythonmatplotlib>=3.2.2numpy>=1.18.5opencv-python>=4.1.2PillowPyYAML>=5.3scipy>=1.4.1tensorboard>=2.2torch>=1.7.0torchvision>=0.8.1tqdm>=4.41.0seaborn>=0.11.0easydic

2021-03-05 21:52:15 26318 202

原创 【人脸检测】 Tinaface复现(数据集准备、测试与评估)

参考TinaFace: Strong but Simple Baseline for Face Detectionhttps://github.com/Media-Smart/vedadet0.环境ubuntu16.04python3.6torch==1.1.0cd vedadetpython setup.py develop1.准备1.1 准备模型https://drive.google.com/u/0/uc?id=1zU738coEVDBkLBUa4hv.

2020-12-03 12:54:36 2604 31

原创 【自动驾驶】《Leveraging Text-Driven Semantic Variationfor Robust OOD Segmentation》论文阅读

本文提出了一种结合视觉语言模型(VLM)的OOD分割新方法,通过文本驱动的OOD分割、基于距离的OOD提示和OOD语义增强三个关键组件,有效提升了自动驾驶场景中未知对象的分割性能。该方法将CLIP的视觉文本编码器与Mask2Former解码器结合,利用WordNet生成语义距离差异的OOD查询,并通过自注意力机制调整语义特征。在Fishyscapes等数据集上的实验表明,该方法显著提高了AuPRC等指标(如AuPRC提升3.87%),为自动驾驶系统提供了更安全的OOD检测能力。

2025-11-16 16:17:33 579

原创 【自动驾驶】《Prioritizing Perception-Guided Self-Supervision: ANew Paradigm for Causal Modeling...》论文阅读

摘要: 本文提出**感知引导自监督(PGS)**训练范式,用于解决端到端自动驾驶中因果混淆与闭环性能不足的问题。PGS通过多模态轨迹规划(MTPS)、空间轨迹规划(STPS)和负轨迹规划(NTPS)三种机制,利用感知输出替代专家轨迹作为监督信号,显式建模驾驶决策的因果关系。MTPS将多模态决策转化为车道选择任务,STPS通过车道中心线对齐减少噪声干扰,NTPS则利用动态障碍物轨迹进行碰撞规避学习。在Bench2Drive测试中,PGS闭环驾驶分数达78.08,成功率提升至48.64%,尤其在变道、紧急制动等

2025-11-16 15:50:59 1115

原创 【自动驾驶】《UniMM-V2X: MoE-Enhanced Multi-Level Fusion for End-to-End Cooperative Autonomous Driving》论文阅读

【摘要】UniMM-V2X提出了一种基于多级融合和混合专家(MoE)架构的端到端多智能体自动驾驶框架。该研究解决了单体智能感知局限性和现有合作方法忽视规划对齐的问题,通过感知/预测层信息共享和MoE动态特征生成,显著提升系统性能。实验表明,在DAIR-V2X数据集上,感知精度提升39.7%,预测误差降低7.2%,规划碰撞率下降52%,同时保持较高通信效率。多级融合与MoE的协同作用被验证是关键创新,为多智能体自动驾驶提供了新思路。(149字)

2025-11-16 15:02:18 605

原创 【自动驾驶】《FLAD: Federated Learning for LLM-based Autonomous Driving in Vehicle-Edge-Cloud Networks》

论文《FLAD: Federated Learning for LLM-based Autonomous Driving in Vehicle-Edge-Cloud Networks》提出了一种基于联邦学习(FL)的自动驾驶框架,旨在通过分布式多模态数据训练提升大型语言模型(LLM)在自动驾驶中的性能,同时解决数据隐私和计算资源限制问题。FLAD采用云-边缘-车辆协作架构,结合智能并行训练和知识蒸馏技术,优化资源利用和模型适应性。实验表明,该框架显著提高了交通灯识别准确率(从79.9%提升到92.66%),

2025-11-16 14:47:21 1020

原创 【自动驾驶】《ARGUS: Resilience-Oriented Safety Assurance Framework for End-to-End ADSs》论文笔记

论文提出ARGUS框架以增强端到端自动驾驶系统(ADS)的安全弹性。该框架包含三个核心组件:危险监控器通过运动预测和分离轴定理实时检测碰撞、停车信号及停滞危险;接管门基于缓冲区状态动态决策控制权切换;危险缓解器采用A*算法重规划轨迹并结合智能驾驶模型调整速度。实验表明ARGUS使ADS驾驶分数提升150.3%,违规减少64.38%,各组件延迟均控制在365ms内,验证了其有效性和实时性。该框架通过持续监控和主动干预显著提升了ADS在复杂场景中的安全性能。

2025-11-16 11:26:54 1140

原创 【目标跟踪】《FastTracker: Real-Time and Accurate Visual Tracking》论文阅读笔记

论文提出FastTracker,一个高效的多目标跟踪框架,通过两个创新组件提升性能:(1)遮挡感知重识别机制增强对严重遮挡目标的特征保持;(2)道路结构感知轨迹优化利用场景语义先验提升轨迹准确性。方法采用两阶段匹配策略和类别自适应卡尔曼滤波,在MOT17和MOT20测试集分别取得66.4和65.7的HOTA分数。同时发布FastTrack基准数据集,包含9类交通目标和80万标注框,支持复杂场景评估。该轻量级系统无需CNN重识别网络,在保持高效的同时超越多数先进方法,适合资源受限设备部署。

2025-08-25 15:30:13 393

原创 【c++】leetcode300 最长递增子序列

摘要:本文实现了一个动态规划算法来计算最长递增子序列的长度。使用双重循环遍历数组,当当前元素大于之前元素时更新dp数组,最终返回dp数组中的最大值。算法时间复杂度为O(n²)。

2025-08-25 10:21:28 263

原创 【git】删除一条本地提交的历史commit

本文介绍如何使用Git删除本地提交历史中的特定commit。通过git rebase -i HEAD~2命令进入交互式变基模式,将需要删除的commit前的"pick"改为"drop",然后保存退出即可删除目标commit。这种方法适用于需要清理中间提交记录的情况,但要注意只适用于尚未推送的本地提交。操作前建议备份重要代码,以防意外数据丢失。

2025-08-20 15:30:11 261

原创 【git】较为安全的代码合并方法

不论是merge还是rebase,即使工作了十几年非常资深的工程师,使用merge或者rebase合并代码的时候,也可能会存在某笔commit被合漏了的情况。(3)git cherry-pick B中所有commit id,按照head往未来时间方向。(1)在B分支通过命令git log打印出head以后我们提交的所有commit id;在实际工程中,在多人参与的项目中,代码合并是非常常见的,而且是必不可少的。(2)git checkout到A分支,git pull拉取最新的代码;

2025-08-20 15:17:11 169

原创 【CUDA编程】CUDA编程入门第一课

本文总结了CUDA编程的学习资源与实践案例。推荐NVIDIA官方文档、中文社区教程和GitHub项目作为学习材料,重点介绍了从CPU到GPU的并行计算优化过程。通过一个百万级数据加法运算的实例,展示了不同实现方式的性能对比:CPU版本耗时1秒,而经过优化的GPU版本(多SM多线程+数据预取)仅需50微秒,加速效果显著。文章还提供了编译命令、性能分析工具的使用方法,以及完整的代码示例,帮助开发者理解CUDA编程的核心概念和优化技巧。

2025-08-20 14:57:33 1496

原创 【自动驾驶】8月 端到端自动驾驶算法论文(arxiv20250819)

自动驾驶领域近期研究聚焦于感知增强、规划优化和系统鲁棒性。CP-FREEZER首次揭示了协同感知系统的延迟攻击风险,实验显示攻击可使处理时延提升90倍。多篇研究探索多模态融合方法:GroundingOcc通过粗到精策略实现3D占据空间定位,DiffSemanticFusion融合栅格与图结构表示提升轨迹预测性能(nuScenes任务提升5.1%)。BEV(鸟瞰图)感知成为技术热点,ME3-BEV和GMF-Drive分别引入Mamba架构和门控融合机制优化端到端系统。风险感知方面,RiskMap提出将风险地图

2025-08-19 17:12:55 1214

原创 【自动驾驶】《CP-FREEZER: Latency Attacks against Vehicular Cooperative Perception》论文粗读笔记

《CP-FREEZER:针对车路协同感知的延迟攻击研究》摘要:该研究首次提出针对协同感知系统的延迟攻击方法CP-FREEZER,通过V2V消息注入对抗性扰动来显著增加感知时延。研究克服了点云预处理不可微、输入异步等挑战,采用创新的延迟诱导损失函数,在OPV2V数据集上测试表明可使端到端时延提升90倍以上,成功实现100%的攻击成功率,单帧处理时间延长至3秒以上。该成果揭示了协同感知系统在可用性方面的安全威胁,为自动驾驶安全防御提供了重要参考。

2025-08-19 14:53:28 914

原创 【自动驾驶】《MapTRv2: An End-to-End Framework for Online Vectorized HD Map Construction》论文阅读笔记

MapTRv2提出了一种端到端的矢量化高精地图构建框架,通过统一排列等价建模方法处理各种形状的地图元素。相比传统SLAM方法,它简化流程、降低成本,并解决了地图更新和对齐问题。该框架采用分层查询嵌入方案和解耦自注意力机制,显著降低计算复杂度,并引入一对多匹配和密集监督加速收敛。实验表明,MapTRv2在nuScenes和Argoverse2数据集上达到SOTA性能,实现了精度与速度的最佳权衡。扩展功能包括有向中心线建模、3D地图构建,以及更深入的理论分析。

2025-08-18 17:04:07 1201

原创 【自动驾驶】《PLUTO: Pushing the Limit of Imitation Learning-based Planning for Autonomous Driving》论文阅读笔记

本论文提出PLUTO框架,突破模仿学习在自动驾驶规划中的性能瓶颈。其主要创新包括:1)纵向-横向感知的模型架构,通过分解式自注意力机制同时处理变道和跟车等操作;2)高效可微辅助损失计算,采用双线性插值实现安全约束;3)对比模仿学习框架(CIL),通过6种数据增强和三元组损失提升交互理解。实验表明,该框架首次在闭环性能上超越基于规则的方法,实现了灵活多样的驾驶行为。相关代码已开源。

2025-08-07 16:07:22 971

原创 【自动驾驶】《Sparse4Dv3》代码学习笔记

Sparse4Dv3方法改进点解析:1)时序实例去噪采用预初始化锚点与动态噪声生成结合,通过时间差补偿目标属性;2)质量估计模块优化,中心点使用交叉熵损失,yaw角采用高斯focal loss;3)引入解耦注意力机制,对锚点特征进行独立编码后拼接,降低计算开销;4)扩展追踪功能,通过缓存实例特征和动态ID分配实现目标关联。代码实现上通过mode参数控制特征融合方式(add/cat),显著提升了算法效率。

2025-08-07 14:32:04 860

原创 【自动驾驶】《Sparse4Dv3 Advancing End-to-End 3D Detection and Tracking》论文阅读笔记

本文提出了Sparse4D-v3框架,通过三项创新策略显著提升了3D感知性能:(1)时序实例去噪策略,在训练中引入带噪声实例并采用预匹配方法;(2)质量估计方法,通过中心度和偏航角相似度评估检测框质量;(3)解耦注意力机制,改进特征组合方式以降低计算开销。该框架还扩展为端到端追踪模型,通过ID分配机制实现目标跟踪。在nuScenes数据集上,使用ResNet50骨干网络取得了46.9% mAP、56.1% NDS和49.0% AMOTA的检测性能,最佳模型达到71.9% NDS和67.7% AMOTA。实验

2025-08-06 17:37:01 1163

原创 【c++】leetcode94 二叉树的中序遍历

题目:二叉树的中序遍历(C++实现) 摘要:本文提供了一个C++解决方案,使用递归方法实现二叉树的中序遍历。代码定义了一个TreeNode结构体表示二叉树节点,Solution类中的inorderTraversal函数执行中序遍历(左-根-右顺序),将节点值存储在vector<int>中返回。当root为空时返回空数组,否则递归遍历左子树,记录当前节点值,再递归遍历右子树。该解法时间复杂度O(n),空间复杂度O(n)。

2025-07-31 11:10:00 148

原创 【c++】leetcode144 二叉树的前序遍历

该代码实现了二叉树的前序遍历(根-左-右)。使用递归方法,当节点非空时,先访问当前节点值存入数组,然后递归遍历左子树和右子树。返回存储遍历结果的数组。时间复杂度O(n),空间复杂度O(n)(递归栈空间)。

2025-07-31 11:06:07 243

原创 【c++】leetcode107 二叉树的层序遍历 II

摘要:本文实现了一个二叉树自底向上的层序遍历算法。通过标准层序遍历(使用队列)逐层处理节点,每完成一层就将结果插入结果集头部,从而实现了反向输出。算法时间复杂度O(n),空间复杂度O(n),关键点在于使用vector.insert()将每层结果插入到结果集前端。

2025-07-31 10:46:29 171

原创 【c++】leetcode763 划分字母区间

该算法解决字符串分割问题,要求每个字符仅出现在一个片段中且划分尽可能多。使用滑动窗口和哈希表统计字符出现次数,通过快慢指针遍历字符串。当窗口内字符出现次数等于总次数时(valid==window.size()),表示当前片段可分割,记录长度并重置窗口。时间复杂度O(n),空间复杂度O(1)。截至2025.7.30,该方案已通过所有测试用例。

2025-07-30 22:19:26 390

原创 【c++】leetcode5 最长回文子串

【代码】【c++】leetcode5 最长回文子串。

2025-07-21 22:20:34 364

原创 【c++】leetcode567 字符串的排列

【代码】【c++】leetcode567 字符串的排列。

2025-07-21 22:13:24 195

原创 【c++】leetcode438 找到字符串中所有字母异位词

【代码】【c++】leetcode438 找到字符串中所有字母异位词。

2025-07-21 22:10:03 279

原创 【c++】快速排序

快速排序是一种高效的O(N*logN)分治算法。其核心思想是:选取基准数后分区,将小于基准的数放左边,大于基准的数放右边,然后递归处理左右子区间。具体实现采用挖坑填数法:从两端向中间扫描,找到不符合条件的元素交换位置,最终将基准数放入正确位置。代码通过双指针i、j遍历数组,不断交换元素完成分区,然后递归处理左右子数组。这种方法在平均情况下具有较高的排序效率。

2025-07-20 15:49:34 164

原创 【c++】leetcode102 二叉树的层序遍历

摘要:本文实现二叉树的层序遍历(BFS),使用队列逐层处理节点。从根节点开始,每次将当前层节点值存入结果,同时将子节点入队,直到队列为空。时间复杂度O(n),空间复杂度O(n)。(98字)

2025-07-20 15:29:07 226

原创 【c++】200*200 01灰度矩阵求所有的连通区域坐标集合

本文提出了一种基于BFS算法在200×200灰度矩阵中检测连通区域的方法。算法通过遍历矩阵,对每个未访问的1像素点执行BFS搜索,标记4连通(上下左右)的相邻1像素点,并将所有连通点坐标存入结果集。文章提供了两种实现方式:标准C++版本使用vector存储矩阵,Eigen版本利用MatrixXi优化矩阵操作。测试案例包含方形、矩形、对角线等多种形状区域,并能正确处理孤立点和孔洞。实验结果准确识别了不同形态的连通区域,验证了算法的有效性。该方法适用于图像处理中的区域分割任务,可通过调整方向向量轻松扩展为8连通

2025-07-20 15:03:01 946 1

原创 【c++】c++ exception with description “map:at thrown in the test body问题解决

当填参的情况下,确认一定会填,但是有时会初始化空的时候,用前面的;其他个别元素没有情况,可以用后面两种。可能是map中没有对应的key,那么可以先判断下map是否为空,或者提前找下是否有该key。= map.end(),说明包含该key,反之不包含。(1)map.empty()为true,那一定没有该key。(2)map.count(key),0则无,1则有该key。

2025-07-02 11:29:57 246

原创 【自动泊车】《ParkingE2E: Camera-based End-to-end Parking Network, from Images to Planning》论文阅读笔记

目前大部分方法都是通过规则实现自动泊车的方法,难以适应非常复杂的场景。深度学习的方法比基于规则的方法更加具有通用性。通过收集大量的数据与基于学习的方法模拟人类策略,泊车任务能够被更有效的解决。在本文中,我们采用模仿学习来执行从RGB图像到路径规划的端到端规划,通过模仿人类驾驶轨迹。所提出的端到端方法利用目标查询编码器来融合图像和目标特征,并利用基于Transformer解码器来自回归预测未来的航路点。在不同类型的真实车库上,达到87.8%的泊入成功率。

2024-12-19 17:33:09 965 1

原创 【ubuntu】ternimal快速在历史命令中搜索

按回车键ENTER就可以搜索到的命令了。

2024-11-19 17:17:30 243

原创 【自动驾驶】《End-to-End Autonomous Driving without CostlyModularization and 3D Manual Annotation》UAD论文阅读笔记

提出 UAD,一种基于视觉端到端的自动驾驶算法。在nuScenes中实现最佳的开环评估性能,同时在CARLA仿真平台中展现出稳健的闭环驾驶性能。发现目前的方法仍然模仿典型驾驶栈中的模块化架构,通过精心设计的监督感知和预测子任务,为定向规划提供环境信息。之前的方法有两大缺点,第一是需要大量的精细的3D标注,第二是每个子模块在训练与推理都需要大量计算开销。提出的UAD,是一种非监督的方法。首先,我们设计了一种新的角度感知预文本来消除标注需求。通过预测角度方向的空间对象性和时间动态来模拟驾驶场景,而无需手动标注。

2024-11-19 15:30:13 1508 5

原创 【c++】fatal error: cuda_runtime.h: No such file or directory

安装了可能就是没有添加环境变量:解决办法就是添加环境变量。

2024-10-09 13:08:03 916

原创 【自动驾驶】《VAD: Vectorized Scene Representation for Efficient Autonomous Driving》VAD论文阅读笔记

自动驾驶由于是一个对安全要求非常高的任务,所以需要全面了解周围的环境,来进行可靠的规划。以前的方法都是网格占用或者分割图等计算量较高的任务。本文提出了VAD,这是一种端到端的自动驾驶矢量化范式,它对驾驶过程进行了建模将场景作为完全矢量化的表示。该方法的优势有两点:(1)矢量化的智能体运动和地图元素作为显示的实例级规划约束,能提高规划安全性;(2)去掉密集型的表示和手工设计的后处理操作,能提高该端到端方法的运行速度。

2024-10-09 12:27:31 2160 1

原创 【ubuntu】ubuntu20.04安装cuda12.6与显卡驱动

由于通过电脑驱动安装的nvidia-driver不一定适配,所以要重新安装,安装好之后reboot后重启就可以了。

2024-10-08 10:22:39 4244

原创 PackagesNotFoundError: The following packages are not available from current channels

以下命令为例。

2024-10-07 21:56:18 574

原创 【ubuntu】ubuntu20.04安装显卡驱动

ubuntu20.04安装显卡驱动

2024-10-07 21:19:39 1054

原创 【ubuntu】ubuntu20.04安装conda

输入yes,将环境导入到bashrc中。

2024-10-07 21:01:56 1226

原创 【自动驾驶】UniAD代码解析

论文:代码:

2024-10-07 20:40:45 913

原创 【自动驾驶】《Planning-oriented Autonomous Driving》UniAD论文阅读笔记

原来的自动驾驶任务都是分为模块化的,感知,预测,规划等。每个独立的任务可能都优化得很好,但可能会存在累积误差或者各个独立的任务之间协调不足。提出一种统一的框架,uniAD,利用各个模块的优势,以全局角度为智能体交互提供互补的特征抽象。在nuScences数据集上有SOTA的表现。由多个独立的任务,到多任务学习(通过共用backbone,使用不同的head,来训练不同的任务),并将其扩展到tranformer BEV等,mobileye,tesla,nvidia均在上面做了一些个性化的产品。

2024-10-07 20:37:13 1480 1

resnext-101-64f-kinetics.pth

https://github.com/kenshohara/3D-ResNets-PyTorch中的预训练模型,https://drive.google.com/drive/folders/1zvl89AgFAApbH0At-gMuZSeQB_LpNP-M

2021-01-05

EfficientNetB3_224_weights.11-3.44.hdf5

来自:https://github.com/yu4u/age-gender-estimation#changing-model-or-the-other-training-parameters

2020-12-04

efficientnet-b3_weights_tf_dim_ordering_tf_kernels_autoaugment.h5

keras efficientnet的预训练模型。来自:https://github.com/Callidior/keras-applications/releases/

2020-12-04

Resnet50_Final.pth

biubug6/Pytorch_Retinaface:https://github.com/biubug6/Pytorch_Retinaface。这里用到的预训练模型Resnet50_Final.pth。

2020-11-30

torch-1.6.0+cu92-cp36-cp36m-linux_x86_64.whl

https://download.pytorch.org/whl/torch_stable.html,torch-1.6.0+cu92-cp36-cp36m-linux_x86_64.whl

2020-12-01

tensorflow_cpu-1.15.0-cp36-cp36m-manylinux2010_x86_64.whl

tensorflow_cpu-1.15.0-cp36-cp36m-manylinux2010_x86_64.whl。linux、CPU版本。

2020-11-12

mxnet_cu90-1.2.0-py2.py3-none-manylinux1_x86_64.whl

mxnet_cu90-1.2.0-py2.py3-none-manylinux1_x86_64.whl

2020-11-30

Dlibface.zip

Dlibface.zip。Dlib试用后的代码,需要的可以自行下载。含人脸检测两种、人脸关键点检测两种、人脸对齐与人脸识别。

2020-11-20

mobilenetV1X0.25_pretrain.tar

https://github.com/biubug6/Pytorch_Retinaface里面使用的mobilenet预训练模型。

2020-10-30

WIDERFace_DSFD_RES152.pth

WIDERFace_DSFD_RES152.pth,来源于:https://github.com/Tencent/FaceDetection-DSFD

2020-11-30

resnext-101-64f-kinetics-ucf101_split1.pth

https://github.com/kenshohara/3D-ResNets-PyTorch中的预训练模型,https://drive.google.com/drive/folders/1zvl89AgFAApbH0At-gMuZSeQB_LpNP-M

2021-01-05

FairMOT-master.zip

FairMOT-master.zip,6月16号版本。下载自:https://github.com/ifzhang/FairMOT/tree/master/。

2020-11-05

mobilenet0.25_Final.pth

biubug6/Pytorch_Retinaface:https://github.com/biubug6/Pytorch_Retinaface。这里用到的预训练模型mobilenet0.25_Final.pth。

2020-10-30

efficientnet-b3_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5

keras efficientnet的预训练模型。来自:https://github.com/Callidior/keras-applications/releases/

2020-12-04

torch-0.4.1-cp36-cp36m-linux_x86_64.whl

cu92version ---- torch-0.4.1-cp36-cp36m-linux_x86_64.whl

2020-11-30

scipy-1.2.0-cp36-cp36m-manylinux1_x86_64.whl

scipy-1.2.0-cp36-cp36m-manylinux1_x86_64.whl,ubuntu16.04+python3.6

2020-11-30

SRN训练后的模型SRN.pth

SRN训练后的模型SRN.pth,来自https://github.com/ChiCheng123/SRN。

2020-11-30

cuda90-torch-0.3.1-cp36-cp36m-linux_x86_64.whl

https://download.pytorch.org/whl/cu90/torch_stable.html,cuda90-torch-0.3.1-cp36-cp36m-linux_x86_64.whl

2020-11-30

cuda90-torch-0.4.1-cp36-cp36m-linux_x86_64.whl

https://download.pytorch.org/whl/cu90/torch_stable.html,cuda90-torch-0.4.1-cp36-cp36m-linux_x86_64.whl

2020-11-30

dlib-models-master.zip

下载自,https://github.com/davisking/dlib-models。包含dlib的人脸检测、关键点、对齐与识别。

2020-11-20

parkinge2e data

parkinge2e data

2025-11-12

parkinge2e data

parkinge2e data

2025-11-12

parkinge2e数据

parkinge2e数据

2025-11-12

预训练模型parkinge2e

预训练模型parkinge2e

2025-11-12

vscode ubutnu

vscode ubutnu

2024-10-04

google-chrome-stable

google-chrome-stable

2024-10-04

GTAD_best.pth.tar

https://github.com/frostinassiky/gtad ,自训练模型。

2022-02-17

DarkLabel2.4.zip

https://github.com/darkpgmr/DarkLabel

2021-12-27

yolov5-develop.zip

https://github.com/ultralytics/yolov5

2021-06-03

bytetrack_x_mot17.pth.tar

https://github.com/ifzhang/ByteTrack,https://drive.google.com/file/d/1P4mY0Yyd3PPTybgZkjMYhFri88nTmJX5/view?usp=sharing。侵权联系我删除。

2021-12-03

ckpt-person-reid-pytorch-deep-sort_20211201.rar

ckpt-person-reid-pytorch-deep-sort_20211201.rar

2021-12-01

widerface_eval.zip

忘记是来自哪里了,应该是官方的吧,需要的可以下载。widerface评估的。

2021-01-14

fast_dcn_res50_256x192.pth

来自https://github.com/MVIG-SJTU/AlphaPose/blob/master/configs/coco/resnet/256x192_res50_lr1e-3_2x-dcn.yaml。

2021-03-11

osnet_ain_x1_0_msmt17_256x128_amsgrad

osnet_ain_x1_0_msmt17_256x128_amsgrad

2021-03-11

torchvision-0.8.2+cu110-cp36-cp36m-linux_x86_64.whl

torchvision-0.8.2+cu110-cp36-cp36m-linux_x86_64.whl

2021-04-26

nv-tensorrt-repo-ubuntu1604-cuda10.1-trt6.0.1.5-ga-20190913_1-1_amd64.deb

nv-tensorrt-repo-ubuntu1604-cuda10.1-trt6.0.1.5-ga-20190913_1-1_amd64.deb

2021-04-13

torch-1.6.0+cu101-cp36-cp36m-linux_x86_64.whl

https://download.pytorch.org/whl/torch_stable.html。

2021-03-17

fast-reid-master-20210111.zip

fast-reid-master-20210111.zip,https://github.com/JDAI-CV/fast-reid

2021-01-13

ffmpeg-N-102519-gdcb285d2b7-win64-gpl.zip

https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-05-12-12-49/ffmpeg-N-102519-gdcb285d2b7-win64-gpl.zip

2021-05-13

nv-tensorrt-repo-ubuntu1604-cuda10.0-trt7.0.0.11-ga-20191216_1-1_amd64.deb

nv-tensorrt-repo-ubuntu1604-cuda10.0-trt7.0.0.11-ga-20191216_1-1_amd64.deb

2021-04-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除