**2019中科大数学考研复试题(回忆版)**
实变函数
1.平面上横坐标或纵坐标为有理数的点集测度为零。
2. { f n } \{f_{n}\} { fn}是一列可测函数,则
(a)若 ∫ A ∣ f n − f n − 1 ∣ d x ≤ 1 2 n \int_{A}|f_{n}-f_{n-1}|dx \le \frac{1}{2^{n}} ∫A∣fn−fn−1∣dx≤2n1,令 f = f 1 + ∑ n = 1 + ∞ ( f n − f n − 1 ) f=f_{1}+\sum\limits_{n=1}^{+\infty}(f_{n}-f_{n-1}) f=f1+n=1∑+∞(fn−fn−1),证明: f f f可积,且
lim x → + ∞ ∫ A ∣ f n − f n − 1 ∣ d x = 0 {\lim\limits_{x \to +\infty}}\int_{A}|f_{n}-f_{n-1}|dx=0 x→+∞lim∫A∣fn−fn−1∣dx=0
(b)证明: L 1 ( A ) L^{1}(A) L