机器学习笔记(五) 支持向量机SVM

本文深入探讨支持向量机(SVM),解释其在处理小样本、非线性和高维模式识别中的优势。内容包括模型原理、间隔最大化、对偶问题的求解、软间隔最大化、损失函数、核函数以及非线性SVM。通过引入核函数,SVM能够解决线性不可分问题,同时介绍了序列最小最优化(SMO)算法用于高效求解对偶问题。
摘要由CSDN通过智能技术生成

       支持向量机(Support Vector Machine)在解决小样本非线性高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

       小样本,不是指样本的绝对数量少(对任何算法来说,更多的样本几乎总是能带来更好的效果),而是说与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。

       非线性,是指SVM擅长应付样本数据线性不可分的情况,主要通过松弛变量和核函数技术来实现,这一部分是SVM的精髓。

       高维模式识别,是指样本维数很高,例如文本的向量表示,如果没有经过降维处理,出现几万维的情况很正常,而SVM 产生的分类器很简洁,用到的样本信息很少(仅仅用到那些“支持向量”的样本),使得即使样本维数很高,也不会给存储和计算带来大麻烦。


1. 模型原理

       如图所示,现有一个二维平面,平面上有两种不同的数据,分别用o和×表示。这些数据是线性可分的,可以用一条直线将这两类数据分开,这条直线就相当于一个超平面,将这两类数据分开。


        实际上,这个超平面就是感知机,而对于感知机而言,分类超平面是不唯一的。

        支持向量机SVM的思想则是以充分大的确信度将两类数据分开,即是这条分离超平面离两边的数据的间隔最大。所以,要寻找有着几何间隔最大的超平面。

1.1 函数间隔和几何间隔

        对超平面 可以表示点x到距离超平面的远近,而如果分类正确,类标号y=1,否则为-1。所以可以用的正负性来表示分类的正确性.

        函数间隔定义为:

        对于训练数据集来说,所有样本点(xi,yi)中的函数间隔最小值便为超平面(w, b)关于训练数据集T的函数间隔:

        几何间隔定义为: 

       同样的,所有样本点(xi,yi)中的几何间隔最小值便为超平面(w, b)关于训练数据集T的几何间隔:

1.2 间隔最大化

        所谓的最大间隔分类器,对应的目标函数为 即几何间隔最大,同时需要满足 ,也就是说所有样本点中最小的函数间隔都要比优化结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值