无向无权图是否存在长度为len的路径问题?

关于无向无权图任意两点是否存在长度为len的路径问题?

  • 以如下无向无权图为例,求0到2之间是否存在长度为5的路径。

  • 直接上代码

  • 以邻接表存储方式,初始化例图。
/**
 * 连接点结构
 */
typedef struct ArcNode{
    /**
     * 连接点的定点下标
     */
    int adjvex;
    /**
     * 下一个邻接点
     */
    struct ArcNode * nextarc;
    /**
     * 与此邻接点构成的边的信息
     */
    InfoType * info;
}ArcNode;

typedef struct VNode{
    /**
     * 定点信息
     */
    VertexType data;
    /**
     * 与其相连的第一个邻接点
     */
    ArcNode * firstarc;
}VNode, AdjList[MAX_VERTEX_NUM];

typedef struct ALGraph{
    /**
     * 图的顶点集
     */
    AdjList vertices;

    int vexnum, arcnum;
    /**
     * 图的种类
     */
    int kind;
}ALGraph;

/**
 * 构建初始化的例图
 * @return
 */
ALGraph * GetSampleGraph(){
    //...
    return alGraph;
}
  • 递归深度搜索是否存在从0到2是否存在长度为5的路径,核心代码如下
/**
 * 无向图从u到v路径节点的访问标志
 *
 */
int visited[MAX_VERTEX_NUM];
//出发点为i,终点为j,长度为k
int exist_path_len(ALGraph * G,int i,int j,int k)
{
    ArcNode *p;
    if(i==j&&k==0)
        return 1;//存在长度为k的路径从i到j
    else if(k>0)
    {
        visited[i]=1;//标记为已经访问
        for(p=G->vertices[i].firstarc;p;p=p->nextarc)
        {
            int temp=p->adjvex;
            /**
             * 对没有被访问过的定点进行深度搜索
             */
            if(!visited[temp]&&exist_path_len(G,temp,j,k-1))
                return 1;
        }
        visited[i]=0;//如果经过这个定点没有符合的路径,则取消标记
        //这里需要把已经访问的点重新置为0,因为如果当前不存在长度为k
        //到达j点,那么这个点还是可以使用的,因为有可能从其他点出发
        //可以到达j点并且长度为k
    }
    return 0;
}
  • 可执行的代码如下:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
#define VertexType int
#define MAX_VERTEX_NUM 50
#define InfoType int

/**
 * 连接点结构
 */
typedef struct ArcNode{
    /**
     * 连接点的定点下标
     */
    int adjvex;
    /**
     * 下一个邻接点
     */
    struct ArcNode * nextarc;
    /**
     * 与此邻接点构成的边的信息
     */
    InfoType * info;
}ArcNode;

typedef struct VNode{
    /**
     * 定点信息
     */
    VertexType data;
    /**
     * 与其相连的第一个邻接点
     */
    ArcNode * firstarc;
}VNode, AdjList[MAX_VERTEX_NUM];

typedef struct ALGraph{
    /**
     * 图的顶点集
     */
    AdjList vertices;

    int vexnum, arcnum;
    /**
     * 图的种类
     */
    int kind;
}ALGraph;

/**
 * 构建初始化的例图
 * @return
 */
ALGraph * GetSampleGraph(){
    ALGraph * alGraph = (ALGraph * ) malloc(sizeof(ALGraph));
    alGraph->arcnum = 12;
    alGraph->vexnum = 7;
    alGraph->kind = 0;//无向无权图
    ArcNode* arc01 = (ArcNode * )malloc(sizeof(ArcNode));
    arc01->adjvex = 1;
    ArcNode* arc05 = (ArcNode * )malloc(sizeof(ArcNode));
    arc05->adjvex = 5;
    ArcNode* arc06 = (ArcNode * )malloc(sizeof(ArcNode));
    arc06->adjvex = 6;
    alGraph->vertices[0].firstarc = arc01;
    alGraph->vertices[0].firstarc->nextarc = arc05;
    alGraph->vertices[0].firstarc->nextarc->nextarc = arc06;
    alGraph->vertices[0].firstarc->nextarc->nextarc ->nextarc = NULL;
    alGraph->vertices[0].data = 0;

    ArcNode* arc10 = (ArcNode * )malloc(sizeof(ArcNode));
    arc10->adjvex = 0;
    ArcNode* arc15 = (ArcNode * )malloc(sizeof(ArcNode));
    arc15->adjvex = 5;

    ArcNode* arc12 = (ArcNode * )malloc(sizeof(ArcNode));
    arc12->adjvex = 2;
    alGraph->vertices[1].data = 1;
    alGraph->vertices[1].firstarc = arc10;
    alGraph->vertices[1].firstarc->nextarc = arc15;
    alGraph->vertices[1].firstarc->nextarc->nextarc = arc12;
    alGraph->vertices[1].firstarc->nextarc->nextarc ->nextarc = NULL;

    ArcNode* arc21 = (ArcNode * )malloc(sizeof(ArcNode));
    arc21->adjvex = 1;
    ArcNode* arc25 = (ArcNode * )malloc(sizeof(ArcNode));
    arc25->adjvex = 5;
    ArcNode* arc24 = (ArcNode * )malloc(sizeof(ArcNode));
    arc24->adjvex = 4;
    ArcNode* arc23 = (ArcNode * )malloc(sizeof(ArcNode));
    arc23->adjvex=3;
    alGraph->vertices[2].data=2;
    alGraph->vertices[2].firstarc = arc21;
    alGraph->vertices[2].firstarc->nextarc = arc25;
    alGraph->vertices[2].firstarc->nextarc->nextarc = arc24;
    alGraph->vertices[2].firstarc->nextarc->nextarc ->nextarc= arc23;
    alGraph->vertices[2].firstarc->nextarc->nextarc ->nextarc->nextarc = NULL;

    ArcNode* arc32 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc34 = (ArcNode * )malloc(sizeof(ArcNode));
    arc32 ->adjvex = 2;
    arc34 ->adjvex=4;
    alGraph->vertices[3].data=3;
    alGraph->vertices[3].firstarc = arc32;
    alGraph->vertices[3].firstarc->nextarc = arc34;
    alGraph->vertices[3].firstarc->nextarc->nextarc = NULL;

    ArcNode* arc42 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc43 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc45 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc46 = (ArcNode * )malloc(sizeof(ArcNode));
    arc42->adjvex=2;
    arc43->adjvex=3;
    arc45->adjvex=5;
    arc46->adjvex=6;
    alGraph->vertices[4].data=4;

    alGraph->vertices[4].firstarc = arc42;
    alGraph->vertices[4].firstarc->nextarc = arc43;
    alGraph->vertices[4].firstarc->nextarc->nextarc = arc45;
    alGraph->vertices[4].firstarc->nextarc->nextarc ->nextarc= arc46;
    alGraph->vertices[4].firstarc->nextarc->nextarc ->nextarc->nextarc = NULL;

    ArcNode* arc50 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc51 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc52 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc54 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc56 = (ArcNode * )malloc(sizeof(ArcNode));
    arc50->adjvex=0;
    arc51->adjvex=1;
    arc52->adjvex=2;
    arc54->adjvex=4;
    arc56->adjvex=6;
    alGraph->vertices[5].data =5;
    alGraph->vertices[5].firstarc = arc50;
    alGraph->vertices[5].firstarc->nextarc = arc51;
    alGraph->vertices[5].firstarc->nextarc->nextarc = arc52;
    alGraph->vertices[5].firstarc->nextarc->nextarc ->nextarc= arc54;
    alGraph->vertices[5].firstarc->nextarc->nextarc ->nextarc->nextarc = arc56;
    alGraph->vertices[5].firstarc->nextarc->nextarc ->nextarc->nextarc ->nextarc= NULL;

    ArcNode* arc60 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc64 = (ArcNode * )malloc(sizeof(ArcNode));
    ArcNode* arc65 = (ArcNode * )malloc(sizeof(ArcNode));

    arc60->adjvex = 0;
    arc64->adjvex = 4;
    arc65->adjvex = 5;
    alGraph->vertices[6].data=6;
    alGraph->vertices[6].firstarc = arc60;
    alGraph->vertices[6].firstarc->nextarc = arc64;
    alGraph->vertices[6].firstarc->nextarc->nextarc = arc65;
    alGraph->vertices[6].firstarc->nextarc->nextarc ->nextarc= NULL;
    return alGraph;
}
/**
 * 无向图从u到v路径节点的访问标志
 *
 */
int visited[MAX_VERTEX_NUM];
//出发点为i,终点为j,长度为k
int exist_path_len(ALGraph * G,int i,int j,int k)
{
    ArcNode *p;
    if(i==j&&k==0)
        return 1;//存在长度为k的路径从i到j
    else if(k>0)
    {
        visited[i]=1;//标记为已经访问
        for(p=G->vertices[i].firstarc;p;p=p->nextarc)
        {
            int temp=p->adjvex;
            /**
             * 对没有被访问过的定点进行深度搜索
             */
            if(!visited[temp]&&exist_path_len(G,temp,j,k-1))
                return 1;
        }
        visited[i]=0;//如果经过这个定点没有符合的路径,则取消标记
        //这里需要把已经访问的点重新置为0,因为如果当前不存在长度为k
        //到达j点,那么这个点还是可以使用的,因为有可能从其他点出发
        //可以到达j点并且长度为k
    }
    return 0;
}



int main() {

    ALGraph * alGraph = GetSampleGraph();
    cout<<exist_path_len(alGraph,0,2,6)<<endl;
    return 0;
}
  • 思考:怎么获取制定路径的具体路径经过的顶点呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值