最近一段时间,轮番上线的音乐大模型,一举将素人生产音乐的门槛降到了最低,并掀起了音乐圈会不会被AI彻底颠覆的讨论。短暂的兴奋后,AI产品的版权归属于谁,创意产业要如何在AI的阴影下生长,都在被更多理性的目光审视。
随着AI技术的飞速发展,音乐大模型的涌现正在重新定义音乐创作的边界。AI的参与引发了关于其对音乐产业的潜在影响的广泛讨论。一些人担心AI可能会取代人类音乐家,而另一些人则认为AI可以作为工具,增强人类的创造力。
1. 整体介绍
1.1.AI如何创作音乐
AI创作音乐通常涉及以下几个关键步骤和原理:
- 数据收集与训练:AI系统首先需要大量的音乐数据进行学习。这些数据可以包括不同风格、时期的音乐作品,以及相关的音乐理论知识。通过这些数据,AI学习音乐的结构、旋律、和声等元素。
- 特征提取:AI分析训练数据,提取音乐特征,如音高、节奏、音色、力度等。这些特征是音乐生成的基础。
- 模型构建:使用机器学习算法,尤其是深度学习技术,构建能够理解和生成音乐的模型。常见的模型包括循环神经网络(RNN)、长短期记忆网络(LSTM)和Transformer等。
- 生成算法:AI使用生成算法来创作音乐。这些算法可以基于概率模型,通过学习音乐数据中的模式来预测和生成新的音乐序列。
- 风格建模:AI学习不同音乐家和流派的风格,以便在生成音乐时能够模仿或融合特定的风格。
- 用户输入:用户可以提供一些输入来引导AI创作,如音乐风格、情绪、主题或特定的音乐元素(如旋律片段)。
- 交互式生成:在某些系统中,AI可以根据用户的反馈或进一步的输入进行迭代,不断优化生成的音乐。
- 后处理和优化:生成的音乐可能需要经过后处理,以确保其符合音乐理论的规则,听起来自然流畅。
- 技术融合:一些AI音乐生成工具可能结合多种技术,如自然语言处理(NLP)来理解歌词内容,以及文本到语音(TTS)技术来生成歌声。
- 多模态能力:部分AI系统还具备多模态能力,能够将音乐与视觉元素(如音乐视频或封面)结合起来,提供更丰富的创作体验。
AI音乐生成的关键在于其算法的复杂性和创造力,以及如何平衡算法生成的音乐与人类审美和情感表达的一致性。随着技术的进步,AI音乐生成器正在变得越来越精细和个性化。
1.2.AI音乐现况
AI在音乐生成方面的发展可以分为两个阶段:
- 阶段一:首先是创新型初创企业的探索
- 阶段二:随后是大型科技公司的跟进。
这些企业通过深度学习和大量数据训练,开发出了能够创作出新颖且风格多样音乐的模型。目前,国内外音乐大模型的发展已经形成了一定的市场规模和影响力,涌现出了一批代表性的产品和企业。以下是一些典型的音乐大模型、提供商背景、商业模式和市场份额的介绍:
国内外音乐大模型
- 腾讯AI Lab的“音画”:腾讯AI Lab推出的音乐生成模型,具备高效的音乐生成能力,能够根据用户需求定制音乐风格。
- 百度的“灵音”:百度发布的AI音乐产品,同样利用深度学习算法生成高质量音乐作品。
- OpenAI的Jukedeck:国际市场上的代表性音乐生成模型之一,以简单易用的音乐生成服务获得广泛关注。
- Google的Magenta:专注于利用深度学习技术探索音乐和艺术创作可能性的项目。
- 昆仑万维的“天工SkyMusic”:专为中文优化的AI音乐生成模型,支持多种方言,提供端到端的音乐生成服务。
大模型提供商背景
- 腾讯AI Lab:隶属于中国的科技巨头腾讯公司,专注于人工智能研究和应用开发。
- 百度:作为中国领先的搜索引擎公司,百度在人工智能领域有深入的研究和产品开发。
- OpenAI:一个国际性的人工智能研究组织,致力于开发和推广友好的AI技术。
- Google:全球知名的科技公司,通过其子公司和项目如Magenta在AI音乐领域进行探索。
- 昆仑万维:中国的互联网公司,通过“天工”系列大模型在AI音乐生成领域取得显著成就。
大模型商业模式
- 订阅制服务:用户通过按月或按年支付费用,享受无限次的音乐生成服务。
- 定制化服务:根据客户需求提供特定风格的音乐作品,服务于广告、影视等行业。
- 授权与版权合作:与版权方合作,共享生成音乐的收益,共同开发新技术。
- 硬件销售:结合智能音箱、音乐创作软件等硬件提供一站式音乐体验。
- 广告合作:与音乐平台、社交媒体合作,通过广告投放获取收益。
市场份额
国内音乐大模型市场仍处于快速发展阶段,市场份额尚未形成明显格局,但随着技术成熟和市场扩大,国内企业如腾讯和百度预计将占据领先地位。
国外市场相对成熟,已有企业如OpenAI和Google占据较大市场份额,但国内企业的崛起可能改变这一格局。
这些音乐大模型的发展不仅推动了技术创新,也为音乐产业带来了新的商业模式和市场机会。随着技术的不断进步,预计AI音乐将在未来的文化产业中扮演更加重要的角色
2. 人机合作
AI与不同层次的音乐人和爱好者的合作模式和方法,尤其是在人引导AI生成音乐方面,有以下几种典型的方式:
- 辅助创作:AI可以作为一个辅助工具,帮助专业音乐人和音乐爱好者提高创作效率。例如,AI可以根据用户指定的风格和情绪快速生成旋律、和声或节奏,供音乐人参考或进一步编辑。
- 共同创作:在某些AI音乐生成器中,用户可以通过提供详细的描述或指令,与AI进行更深层次的交互式创作。AI根据用户的输入生成音乐,用户可以在此基础上进行调整和完善,实现人机共创。
- 引导式创作:AI音乐生成器通常提供不同的模式来引导用户创作。例如,用户可以选择“歌曲描述模式”,在其中描述期望的音乐风格和主题,AI根据这些信息生成音乐;或者选择“自定义模式”,在其中完全控制歌词和音乐风格。
- 可编辑能力:一些AI音乐平台允许用户在AI生成音乐后进行编辑,如调整旋律线、和声和节奏等,以确保最终作品符合用户的创作意图和艺术愿景。
- 音乐教育:AI音乐生成器也可以作为音乐教育的工具,帮助学生探索不同的音乐风格和创作技巧,激发他们的音乐创造力。
- 音乐视频和封面生成:除了音乐和歌词生成,一些AI平台还计划推出音乐视频和封面生成功能,为用户提供更全面的音乐创作解决方案。
- 跨领域应用:AI音乐生成器还被应用于电影配乐、游戏音乐、广告音乐制作等领域,帮助创作者快速生成符合场景需求的音乐。
- 个性化音乐体验:AI可以根据个人的情感或活动(如马拉松训练、婚礼等)生成个性化的音乐,提供独特的音乐体验。
- 音乐灵感启发:即使是专业音乐人,也可以使用AI音乐生成器作为灵感启发的工具,通过AI生成的音乐片段激发新的创作思路。
通过这些合作模式和方法,AI音乐生成器不仅降低了音乐创作的门槛,也为专业和非专业音乐人提供了更多的可能性和灵感来源。
3. 伦理道德和法律风险
AI在创意产业尤其是AI音乐领域的发展,确实引发了一系列伦理道德和法律风险问题。以下是一些主要的问题和挑战:
- 版权归属问题:AI生成的音乐作品的版权归属是一个复杂的问题。它涉及到原始数据的来源、算法设计者的贡献、以及使用AI创作的个人或机构的权利。
- 创意与人类角色的取代:尽管AI在音乐生成上的能力日益增强,但它是否能真正取代人类创作者,仍存争议。音乐不仅仅是音符的组合,更是情感、故事和文化背景的传达,这些深层的创造性表达被认为是AI难以完全掌握的。
- 隐私与数据安全:AI在处理和分析大量数据时,可能会涉及用户的隐私信息。特别是在创意产业中,这些数据可能包括用户的创作习惯、喜好等敏感信息。如何确保这些数据的安全和隐私保护,是AI应用中必须面对的问题。
- 公平性与偏见:AI在创意产业中的应用也可能带来公平性和偏见的问题。例如,AI在音乐推荐系统中可能存在偏见,导致某些类型的音乐或艺术家被忽视。此外,AI在创作过程中也可能受到训练数据的影响,产生不公平的结果。
- 技术滥用:随着AI技术的不断发展,在网上“克隆”他人的容貌、声音已非难事,相关纠纷也屡见不鲜。AI生成声音可识别性的认定应综合考虑行为人使用情况,并以相关领域普通听众能否识别作为判断标准。
- 行业自律与监管:为了保护个人权益的基础上进行AI技术的研发和应用,需提高AI技术的安全性和可靠性,防止声音被非法获取和使用;还要加强行业自律,建立完善的监管机制,规范AI技术的使用行为。
- 侵权风险:AI生成作品的侵权风险也是一个重要问题。使用AI进行创作时,如果使用了受著作权法保护的作品作为训练数据,而没有得到版权方授权,就可能构成侵权。
- 法律供给与技术标准:AI领域的法治化仍有进一步细化的空间。需要加快人工智能方面的法律供给,推动国家层面生成式人工智能规范的确立。对已有案例出现的疑难法律问题,要通过学术讨论和司法实践,逐步形成共识,总结确立法律适用规则。
解决这些问题需要法律、技术、行业和社会各界的共同努力,以确保AI技术的发展既能推动创意产业的进步,又能保护个人权益、促进公平竞争,并尊重人类的创造力。
4.个人观点
AI在音乐领域的应用引发了广泛的讨论,关于它是在创造音乐还是毁掉音乐,并没有一个统一的答案。这个问题的答案很大程度上取决于我们从哪个角度来看待AI的作用和影响:
AI创造音乐的观点:
- 降低创作门槛:AI使得没有专业音乐背景的人也能创作音乐,扩大了音乐创作的群体。
- 提供灵感:AI可以作为工具,帮助音乐人探索新的旋律和和声,提供创作灵感。
- 效率提升:AI可以快速生成大量音乐作品,为需要大量背景音乐的场景(如视频、游戏、公共场所)提供便利。
- 音乐教育:AI技术可以作为教育工具,帮助学生学习和理解音乐理论。
- 个性化体验:AI能够根据个人喜好生成个性化的音乐,提供定制化的听觉体验。
AI可能对音乐产生负面影响的观点:
- 同质化风险:AI生成的音乐可能缺乏个性和创新性,导致音乐作品趋于同质化。
- 版权和原创性问题:AI作品的版权归属可能不明确,且可能存在模仿或复制现有作品的风险。
- 对专业音乐人的影响:AI的广泛应用可能会影响专业音乐人的工作机会,尤其是在背景音乐和简单旋律创作方面。
- 艺术价值的争议:一些人认为AI缺乏真正的情感和人类经验,因此可能无法创造出具有深刻艺术价值的音乐。
综合考量:
AI技术本身是中性的,它既可以成为创造音乐的有力工具,也可能带来一些挑战和问题。关键在于我们如何使用这项技术:
- 合理使用:将AI作为辅助工具,而不是完全依赖它来创作音乐。
- 版权和伦理:明确AI创作作品的版权归属,并确保AI的使用符合伦理和法律规定。
- 技术与人类创造力的结合:利用AI的效率和能力,同时结合人类的创造力和情感表达,创作出既有技术含量又有艺术价值的音乐作品。
最终,AI在音乐领域的应用应该是增强和扩展人类的创作能力,而不是取代人类的创造力。通过合理的引导和规范,AI有潜力成为音乐创作和发展的积极力量。