二叉树的广度优先遍历BFS和深度优先遍历DFS

在这里插入图片描述

1.广度优先遍历

英文缩写为BFS即Breadth FirstSearch。其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次。对于上面的例子来说,广度优先遍历的 结果是:A,B,C,D,E,F,G,H,I(假设每层节点从左到右访问)。

先往队列中插入左节点,再插右节点,这样出队就是先左节点后右节点了。
  广度优先遍历树,需要用到队列(Queue)来存储节点对象,队列的特点就是先进先出。例如,上面这颗树的访问如下:

首先将A节点插入队列中,队列中有元素(A);

将A节点弹出,同时将A节点的左、右节点依次插入队列,B在队首,C在队尾,(B,C),此时得到A节点;

继续弹出队首元素,即弹出B,并将B的左、右节点插入队列,C在队首,E在队尾(C,D,E),此时得到B节点;

继续弹出,即弹出C,并将C节点的左、中、右节点依次插入队列,(D,E,F,G,H),此时得到C节点;

将D弹出,此时D没有子节点,队列中元素为(E,F,G,H),得到D节点;

。。。以此类推。。

public class Solution{
	private List<Integer> bfs(TreeNode root){
		List<Integer> result = new ArrayList<>();
		if(root == null) return result;
		Queue<TreeNode> queue = new LinkedList<>();
		queue.add(root);
		while(!queue.isEmpty()){
			TreeNode node = queue.poll();
			if(node.left != null) queue.add(node.left);
			if(node.right != null) queue.add(node.right);
			result.add(node.val);
		}
		return result;
	}
}

2.深度优先遍历

英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。对于上面的例子来说深度优先遍历的结果就是:A,B,D,E,I,C,F,G,H.(假设先走子节点的的左侧)。

深度优先遍历各个节点,需要使用到栈(Stack)这种数据结构。stack的特点是是先进后出。整个遍历过程如下:

先往栈中压入右节点,再压左节点,这样出栈就是先左节点后右节点了。
首先将A节点压入栈中,stack(A);

将A节点弹出,同时将A的子节点C,B压入栈中,此时B在栈的顶部,stack(B,C);

将B节点弹出,同时将B的子节点E,D压入栈中,此时D在栈的顶部,stack(D,E,C);

将D节点弹出,没有子节点压入,此时E在栈的顶部,stack(E,C);

将E节点弹出,同时将E的子节点I压入,stack(I,C);

…依次往下,最终遍历完成。

代码:也是以二叉树为例。非递归

public class Solution{
	private List<Integer> dfs(TreeNode node){
		List<Integer> list = new ArrayList<>();
		if(root == null) return list;
		Stack<Integer> stack = new Stack<>();
		stack.push(root);
		while(!stack.isEmpty()){
			TreeNode node = stack.pop();
			if(node.right != null) stack.push(node.right);
			if(node.left != null) stack.push(node.left);
			result.add(node.val);
		}
		return result;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值