选课时间(题目已修改,注意读题)
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5224 Accepted Submission(s): 3998
Problem Description
又到了选课的时间了,xhd看着选课表发呆,为了想让下一学期好过点,他想知道学n个学分共有多少组合。你来帮帮他吧。(xhd认为一样学分的课没区别)
Input
输入数据的第一行是一个数据T,表示有T组数据。
每组数据的第一行是两个整数n(1 <= n <= 40),k(1 <= k <= 8)。
接着有k行,每行有两个整数a(1 <= a <= 8),b(1 <= b <= 10),表示学分为a的课有b门。
每组数据的第一行是两个整数n(1 <= n <= 40),k(1 <= k <= 8)。
接着有k行,每行有两个整数a(1 <= a <= 8),b(1 <= b <= 10),表示学分为a的课有b门。
Output
对于每组输入数据,输出一个整数,表示学n个学分的组合数。
Sample Input
2 2 2 1 2 2 1 40 8 1 1 2 2 3 2 4 2 5 8 6 9 7 6 8 8
Sample Output
2 445
题意:用背包情况解决了组合的问题,dp作用是用来存到当前的分数的最大的组合数,
将dp【0】设置为1种,只要j-c*a>=0 得到组成到j的组合数,从c的变化求得
注意每一个dp【j】都是到j的最大的组合数, 用最大的组合数,用最大组合数递推出最大组合数。
看完这道题后,发现
当一个题可以用更高级的方法解决的时候,你就具有了更高级的考虑问题的思维,这点很重要。重要的是这种思维模式都是一种新颖的,并且更加高效的。棒!
这里我举一个栗子:
不要在意细节! 字差不是不代表代码差 = =
#include<iostream>
#include<string.h>
using namespace std;
int main()
{
int n,i,j,k,dp[80],t,c,a,b;
cin>>t;
while(t--)
{
memset(dp,0,sizeof(dp));
dp[0]=1;
cin>>n>>k; //背包总重量为 n 有k组数据
for(i=1;i<=k;i++)
{
cin>>a>>b; //学分为a的有b门 类比为重量为a的有b的价值
for(j=n;j>=a;j--) //从n到 当前a
for(c=1;c<=b;c++) //枚举有多少门课可以读
if(j-c*a>=0) dp[j]+=dp[j-c*a]; //说明组成该j的情况多了一种
//for(int i=0;i<=n;i++)
// cout<<dp[i]<<" ";
//cout<<endl;
}
cout<<dp[n]<<endl;
}
return 0;
}