自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 datawhale组队学习心电图分类 task03

task03 特征工程3.1 学习目标学习时间序列数据的特征预处理方法学习时间序列特征处理工具 Tsfresh(TimeSeries Fresh)的使用3.2 内容介绍数据预处理时间序列数据格式处理加入时间步特征time特征工程时间序列特征构造特征筛选使用 tsfresh 进行时间序列特征处理3.3 代码示例3.3.1 导入包并读取数据# 包导入import pandas as pdimport numpy as npimport tsfresh as tsffrom t

2021-03-22 06:20:14 197

原创 全球人工智能技术创新大赛【热身赛一】Task01

全球人工智能技术创新大赛【热身赛一】Task01运行过程中一些问题:构建docker中的一些问题:run.shDockerfile常见docker命令汇总:提交成功参考资料运行过程中一些问题:报错:AttributeError: Can’t get attribute ‘SiLU’ on <module ‘torch.nn.modules.activation’解决:升级pytorch到1.7报错:ValueError: Cannot load file containing pickled

2021-02-22 02:48:58 465

原创 datawhale学习-数据可视化(3)

datawhale学习-数据可视化(3)一、子图1. 使用 plt.subplots 绘制均匀状态下的子图二、子图上的方法作业作业1. 墨尔本1981年至1990年的每月温度情况作业2:画出数据的散点图和边际分布一、子图1. 使用 plt.subplots 绘制均匀状态下的子图返回元素分别是画布和子图构成的列表,第一个数字为行,第二个为列figsize 参数可以指定整个画布的大小sharex 和 sharey 分别表示是否共享横轴和纵轴刻度tight_layout 函数可以调整子图的相对大小使字

2020-12-20 20:54:30 314 2

原创 datawhale组队学习——CV篇(3)

datawhale组队学习——CV篇(3)前言3.5 损失函数3.5.1 Matching strategy (匹配策略):3.5.2 损失函数3.5.3 Hard negative mining:3.5.4 小结前言3.5 损失函数3.5.1 Matching strategy (匹配策略):我们分配了许多prior bboxes,我们要想让其预测类别和目标框信息,我们先要知道每个prior bbox和哪个目标对应,从而才能判断预测的是否准确,从而将训练进行下去。不同方法 ground tr

2020-12-20 08:05:24 151 2

原创 datawhale组队学习——CV篇(1)

3.3 锚框 or 先验框3.3.1 关于先验框在众多经典的目标检测模型中,均有先验框的说法,有的paper(如Faster RCNN)中称之为anchor(锚点),有的paper(如SSD)称之为prior bounding box(先验框),实际上是一个概念。那么,为什么要有先验框这个概念呢?按理说我们的图片输入模型,模型给出检测结果就好了,为什么还要有先验框?那么关于它的作用,我们不妨回顾一下前面在2.1节所说的那个目标检测最初的解决方案,我们说,我们要遍历图片上每一个可能的目标框,再对这些框进

2020-12-19 11:07:48 261

原创 datawhale组队学习 Task02 - 艺术画笔见乾坤

一、概述1. matplotlib的三层apimatplotlib的原理或者说基础逻辑是,用Artist对象在画布(canvas)上绘制(Render)图形。就和人作画的步骤类似:准备一块画布或画纸准备好颜料、画笔等制图工具作画所以matplotlib有三个层次的API:matplotlib.backend_bases.FigureCanvas 代表了绘图区,所有的图像都是在绘图区完成的matplotlib.backend_bases.Renderer 代表了渲染器,可以近似理解为画笔,控

2020-12-18 22:45:04 380 1

原创 datawhale组队学习——数据可视化(1)

第一回:Matplotlib初相识一、认识matplotlibMatplotlib是一个Python 2D绘图库,能够以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形,用来绘制各种静态,动态,交互式的图表。Matplotlib可用于Python脚本,Python和IPython Shell、Jupyter notebook,Web应用程序服务器和各种图形用户界面工具包等。Matplotlib是Python数据可视化库中的泰斗,它已经成为python中公认的数据可视化工具,我们所熟知的pand

2020-12-14 20:57:29 93

原创 20201203

推荐系统新闻推荐——特征工程制作特征和标签, 转成监督学习问题导包df节省内存函数数据读取训练和验证集的划分获取历史点击和最后一次点击读取训练、验证及测试集读取召回列表读取各种EmbeddingWord2Vec训练及gensim的使用读取文章信息读取数据对训练数据做负采样将召回数据转换成字典特征工程制作与用户历史行为相关特征用户和文章特征用户相关特征分析一下点击时间和点击文章的次数,区分用户活跃度分析一下点击时间和被点击文章的次数, 衡量文章热度特征用户的系列习惯用户的设备习惯用户的时间习惯用户的主题爱好用

2020-12-03 06:58:37 177

原创 2020-11-27

系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档推荐系统入门实战-新闻推荐系列文章目录数据分析建议一、pandas是什么?导入包读取数据数据预处理计算用户点击rank和点击次数数据浏览¶总结数据分析数据分析的价值主要在于熟悉了解整个数据集的基本情况包括每个文件里有哪些数据,具体的文件中的每个字段表示什么实际含义,以及数据集中特征之间的相关性

2020-11-27 23:31:47 100

转载 模型融合

模型融合1. 内容介绍1.1 stacking\blending详解2 代码示例2.1 平均:2.2 投票2.3 Stacking:2.4 blending总结1. 内容介绍将之前建模调参的结果进行模型融合。(模型融合一般用于A榜比赛的尾声和B榜比赛的全程)。模型融合是比赛后期上分的重要手段,特别是多人组队学习的比赛中,将不同队友的模型进行融合,可能会收获意想不到的效果哦,往往模型相差越大且模型表现都不错的前提下,模型融合后结果会有大幅提升,以下是模型融合的方式。平均:简单平均法加权平均法投

2020-09-27 23:08:48 109

转载 Task04 建模调参代码实现

datawhale金融风控代码实现读取数据简单建模模型调参1. 贪心调参2. 网格搜索3. 贝叶斯调参模型调参小总结代码实现import pandas as pdimport numpy as npimport warningsimport osimport seaborn as snsimport matplotlib.pyplot as plt"""sns 相关设置@return:"""# 声明使用 Seaborn 样式sns.set()# 有五种seaborn的绘图风格,它

2020-09-24 23:38:26 136

原创 将json文件转为xml,没有换行符问题解决

将json文件转为xml,没有换行符问题解决将json转为xml的方法,网上大概有两种方案,dom和elementtree我习惯于使用后者了,可是这种方法书写出的xml没有换行符号,实在不忍直视。于是找到了以下代码片段,来解决这一问题,非常简单:def indent( elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip():

2020-09-23 12:14:05 657

原创 datawhale金融风控挑战赛:赛题理解

datawhale金融风控挑战赛:赛题理解一、比赛数据1.1数据特征理解1.2 Pandas数据读取二、常见分类指标2.1 混淆矩阵2.2 准确率(Accuracy)2.3 精确率(Precision)2.4 召回率(Recall)2.5 F1 Score2.6 P-R曲线(Precision-Recall Curve)2.7 ROC(Receiver Operating Characteristic)2.8 AUC(Area Under Curve)三、金融风控预测类常见评估指标3.1 KS(Kolmog

2020-09-15 21:36:08 1088

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除