Scrapy框架

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/m0_37752335/article/details/78494205

Scrapy基本流程

1.首先说一下框架的概念。之前一直故步自封与一个requests+bs4以及一些Selenium+Phantomjs零零散散的一些爬虫流程。从招聘网站上看到python爬虫的工作都需要掌握Scrapy框架以及Selenium技术才恍然大悟,一个成型的框架首先搭建好了一个完整的爬虫逻辑,各个功能也相对封装的很棒,对于大规模数据爬取,只要将对主要爬虫细节进行设计(每个网页的结构特点不同导致),就可以实现高效的数据爬取,包括异步爬取与分布式爬取。

简要说一下Scrapy框架的基本构成元素以及运行的流程

基本元素

1.Scrapy Engine: 这是引擎,负责Spiders、ItemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等等!(像不像人的身体?)

2.Scheduler(调度器): 它负责接受引擎发送过来的requests请求,并按照一定的方式进行整理排列,入队、并等待Scrapy Engine(引擎)来请求时,交给引擎。

3.Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spiders来处理。(因为这一步会根据schedule队列发给engine再由engine通过DownloaderMiddlewares中间件交给Downloader向服务器发起请求并返回response并下载)所以例如cookies和User-Agent等信息通过这道工序传入(重点注意:接下来会讲解scrapy登陆篇)

4.Spiders:它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器)。递归的处理页面,类似于横向网页爬取,每个网页上都有一定数量的类似商品详细链接,spiders将每一页网页上的一定数量的商品详细链接交给engine后再进入schedule队列准备进一步爬取商品详情页的信息。

5.Item Pipeline:它负责处理Spiders中获取到的Item,并进行处理,比如去重,持久化存储(存数据库,写入文件,总之就是保存数据用的)。

6.Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。

7.Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎和Spiders中间‘通信‘的功能组件(比如进入Spiders的Responses;和从Spiders出去的Requests)
数据在整个Scrapy的流向:

程序运行的时候,

引擎:Hi!Spider, 你要处理哪一个网站?

Spiders:我要处理23wx.com(start_urls中拿出第一个要爬取的内容)

引擎:你把第一个需要的处理的URL给我吧。

Spiders:给你第一个URL是XXXXXXX.com

引擎:Hi!调度器,我这有request你帮我排序入队一下。

调度器:好的,正在处理你等一下。(这一步是为了分布式处理与所要处理的url的去重操作)

引擎:Hi!调度器,把你处理好的request给我,

调度器:给你,这是我处理好的request

引擎:Hi!下载器,你按照下载中间件的设置帮我下载一下这个request

下载器:好的!给你,这是下载好的东西。(如果失败:不好意思,这个request下载失败,然后引擎告诉调度器,这个request下载失败了,你记录一下,我们待会儿再下载。)

(重要!)引擎:Hi!Spiders,这是下载好的东西,并且已经按照Spider中间件处理过了,你处理一下(注意!这儿responses默认是交给def parse这个函数处理的)

(重要!)Spiders:(处理完毕数据之后对于需要跟进的URL),Hi!引擎,这是我需要跟进的URL,将它的responses交给函数 def xxxx(self, responses)处理。还有这是我获取到的Item。

引擎:Hi !Item Pipeline 我这儿有个item你帮我处理一下!调度器!这是我需要的URL你帮我处理下。然后从第四步开始循环,直到获取到你需要的信息,

注意!只有当调度器中不存在任何request了,整个程序才会停止,(也就是说,对于下载失败的URL,Scrapy会重新下载。)

以上就是Scrapy整个流程了。

展开阅读全文

没有更多推荐了,返回首页