leetcode 204. Count Primes

这道题是easy标签的,我的做法效率比较低,涉及到一种经典的找素数的方法,在这里记录一下。

问题一:求前n个数里有几个素数。

解法一:经典算法(埃拉托斯特尼筛法)

class Solution {
public:
    int countPrimes(int n) {
    vector <bool> isprime(n,true);
    for (int i = 2; i*i < n; i++){
        if (!isprime[i]) continue;
        for (int j = i; j*i < n;j++){
            isprime[j*i]  = false;
        }
    }
    int count = 0;
    for(int i = 2; i<n; i++){
        if(isprime[i]) count++;
    }
    return count;
    
    }
};

确点是要跑两遍n,不是很方便。

解法二:

class Solution {
public:
    int countPrimes(int n) {
        vector<bool> notprime(n,false);
        int count = 0;
        for(int i = 2; i < n; i++){
            if(notprime[i] == false){
                count++;
                if(i*i < n){
                    for(int j = 2; i*j < n; j++){
                      notprime[i*j] = true;  
                    }
                }
            }
        }
        return count;
    }
};

改良版,只跑一遍,原理是一样的都是用一个动态数组存储是否为素数,减少计算次数。

相当于牺牲空间也减少时间。

for(int j = 2; i*j < n; j++) 里面理论上可以写成for(int j = i; i*j < n; j++), 更加合理,但是leetcode上会出runtime error, 可能是数字过大的时候,i更新不及时?不知道,在10000以下都没问题,就这样吧, j = 2可以过。

问题二:打印前n个素数。用上述解法二的代码很方便。

leetcode好像没有这个题,但是网上用暴力求解比较多。看到大多用比较暴力的方法求解,也可以用上面这两种方法,但有一个问题是isprime设多大的初始空间。看到int limit = nth < 6 ? 25 : (int)(nth * (Math.Log(nth) + Math.Log(Math.Log(nth))));

这种处理方式,应该是对的,但目前不知道怎么证明,n个素数要是n<6,就是25,要么就一定在(nth * (Math.Log(nth) + Math.Log(Math.Log(nth))))这么大的数里,大数定理?忘了。。。

暴力法就不提了一个一个判断就行了。

附上暴力法代码,经典解法其实不管怎么样都会多算,所以对于问题二暴力法好?

#include <iostream>
bool isprime(int n) {
    for(int i = 2; i*i <= n;i++){
        if(n%i == 0)
            return false;
    }
    return true;
}
int main() {
    int n = 100, count = 0;
    for (int i = 2; ; i++){
        if(count == n)
                break;
        if(isprime(i) == true){
            cout<<i<<endl;
            count++;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值