这道题是easy标签的,我的做法效率比较低,涉及到一种经典的找素数的方法,在这里记录一下。
问题一:求前n个数里有几个素数。
解法一:经典算法(埃拉托斯特尼筛法)
class Solution {
public:
int countPrimes(int n) {
vector <bool> isprime(n,true);
for (int i = 2; i*i < n; i++){
if (!isprime[i]) continue;
for (int j = i; j*i < n;j++){
isprime[j*i] = false;
}
}
int count = 0;
for(int i = 2; i<n; i++){
if(isprime[i]) count++;
}
return count;
}
};
确点是要跑两遍n,不是很方便。
解法二:
class Solution {
public:
int countPrimes(int n) {
vector<bool> notprime(n,false);
int count = 0;
for(int i = 2; i < n; i++){
if(notprime[i] == false){
count++;
if(i*i < n){
for(int j = 2; i*j < n; j++){
notprime[i*j] = true;
}
}
}
}
return count;
}
};
改良版,只跑一遍,原理是一样的都是用一个动态数组存储是否为素数,减少计算次数。
相当于牺牲空间也减少时间。
for(int j = 2; i*j < n; j++) 里面理论上可以写成for(int j = i; i*j < n; j++), 更加合理,但是leetcode上会出runtime error, 可能是数字过大的时候,i更新不及时?不知道,在10000以下都没问题,就这样吧, j = 2可以过。
问题二:打印前n个素数。用上述解法二的代码很方便。
leetcode好像没有这个题,但是网上用暴力求解比较多。看到大多用比较暴力的方法求解,也可以用上面这两种方法,但有一个问题是isprime设多大的初始空间。看到int limit = nth < 6 ? 25 : (int)(nth * (Math.Log(nth) + Math.Log(Math.Log(nth))));
这种处理方式,应该是对的,但目前不知道怎么证明,n个素数要是n<6,就是25,要么就一定在(nth * (Math.Log(nth) + Math.Log(Math.Log(nth))))这么大的数里,大数定理?忘了。。。
暴力法就不提了一个一个判断就行了。
附上暴力法代码,经典解法其实不管怎么样都会多算,所以对于问题二暴力法好?
#include <iostream>
bool isprime(int n) {
for(int i = 2; i*i <= n;i++){
if(n%i == 0)
return false;
}
return true;
}
int main() {
int n = 100, count = 0;
for (int i = 2; ; i++){
if(count == n)
break;
if(isprime(i) == true){
cout<<i<<endl;
count++;
}
}
}