T检验

什么是T检验?

T检验是假设检验的一种,又叫student t检验(Student’s t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。
T检验用于检验两个总体的均值差异是否显著。

一个例子

例1:
“超级引擎”工厂是一家专门生产汽车引擎的工厂,根据政府发布的新排放要求,引擎排放平均值应低于20ppm,如何证明生产的引擎是否达标呢?(排放量的均值小于20ppm)

思路1

一个直接的想法就是,把这个工厂所有的引擎都测试一下,然后求一下排放平均值就好了。比如工厂生产了10个引擎,排放水平如下:
15.6 16.2 22.5 20.5 16.4
19.4 16.6 17.9 12.7 13.9
排放平均值为
(15.6+16.2+22.5+20.5+16.4+19.4+16.6+17.9+12.7+13.9)/10=17.17
小于政府规定的20ppm,合格!

这也太简单了!

然而,随着“超级引擎”工厂规模逐渐增大,每天可以生产出10万个引擎,如果把每个引擎都测试一遍,估计要累死人了……
有没有更好的方法?

思路2

由于引擎数量太多,把所有引擎测试一遍太麻烦了,“智多星”有一个好想法:
可不可以采用“反证法”?先假设所有引擎排放量的均值为 μ ,然后随机抽取10个引擎,看看这10个引擎的排放量均值与假设是否相符,如果相符,则认为假设是正确的,反之认为假设是错误的。这样,就可以通过一小部分数据推测数据的总体,真是太棒了!

具体怎么操作呢?

先建立两个假设,分别为:
H0:μ20 (原假设)
H1:μ<20 (备择假设)
μ 代表总体(所有引擎的排放量)均值】

在原假设成立的基础上,求出”取得样本均值或者更极端的均值”的概率,如果概率很大,就倾向于认为原假设 H0 是正确的,如果概率很小,就倾向于认为原假设 H0 是错误的,从而接受备择假设 H1

那么如何求这个概率p呢?
这就需要引入一个概念——统计量
简单的讲,统计量就类似于用样本已知的信息(如样本均值,样本标准差)构建的一个“标准得分”,这个“标准得分”可以让我们求出概率p

由于样本服从正态分布,且样本数量较小(10),所以这里要用到的统计量为t统计量,公式如下:

t=x¯μS/nt(n1)

x¯:
μ:
S:
n:
t 统计量服从自由度为n1的t分布

让我们试验一下!
现在抽取出10台引擎供测试使用,每一台的排放水平如下:
15.6 16.2 22.5 20.5 16.4
19.4 16.6 17.9 12.7 13.9
样本均值

x¯=nk=1xkn=(15.6+16.2+22.5+20.5+16.4+19.4+16.6+17.9+12.7+13.9)10=17.17

样本方差
S2=nk=1(xkx¯)n1

样本标准差
S=S2=(15.617.17)2+(16.217.17)2++(13.917.17)2n1=2.98

我们把原假设 μ20 拆分,先考虑 μ=20 的情况
将数值带入t统计量公式中,可以得出 t=17.17202.98/10=3.00

由于t统计量服从自由度为9的t分布,我们可以求出t统计量小于-3.00的概率,即下图阴影部分面积
这里写图片描述

p值

通过查询t分位数表(见附录),我们可知,当自由度为9时,t统计量小于-2.821的概率为1%,而我们求得的t统计量为-3.00,所以t统计量小于-3.00的概率比1%还要小(因为-3.00在-2.81的左边,所以阴影面积更小)。
这个概率值通常被称作“p值”,即在原假设成立的前提下,取得“像样本这样,或比样本更加极端的数据”的概率。

到这里,我们可以总结出如下结论:
μ=20 成立(所有引擎排放均值为20ppm)的前提下,从所有引擎中随机选出10个引擎,这10个引擎排放均值小于17.17的概率小于1%

再考虑 μ>20 的情况:
由t统计量的公式 t=x¯μS/n 可以看出,当 μ 增大,其他变量均保持不变时, t 统计量的值会变小,因此求概率时阴影面积也会变小,总结来看,我们得出如下结论:
μ20成立的前提下,从所有引擎中随机选出10个引擎,这10个引擎排放均值小于17.17的概率小于1%

由于1%的概率很小,所以我们更倾向于认为,原假设 H0:μ20 是错误的,从而接受备择假设 H1

综上,我们认为,所有引擎的排放量均值小于20ppm,工厂生产的引擎符合标准。

第一类错误与第二类错误

在例1中,我们认为1%的概率很小,所以更倾向于认为原假设是错误的,从而接受了备择假设。但这样的判断是准确的吗?为了探讨这个问题,我们考虑以下四种情况:

事实(右)/判断(下) H0 成立 H1 成立
H0 成立判断正确第二类错误
H1 成立第一类错误判断正确

即:
如果事实为 H0 成立,而我们做出了接受备择假设 H1 的判断,则犯了第一类错误——拒真
如果事实为 H1 成立,而我们做出了接受原假设 H0 的判断,则犯了第二类错误——取伪

所以用另外一种角度来看上面的例子:
μ20 成立的前提下,从所有引擎中随机选出10个引擎,这10个引擎排放均值小于17.17的概率小于1%,当我们据此做出“拒绝原假设 H0 ,接受备择假设 H1 ”的结论时,有小于1%的概率犯第一类错误,因为 H0 仍有小于1%的概率是成立的,虽然这个概率很小。

α

所以利用t检验做出的结论并不是百分之百正确的,仍有很小的几率会犯错误。对于上面的例子,有些人会认为1%的概率已经很小了,可以拒绝原假设,还有些人会认为1%的概率虽然很小,但不足以拒绝原假设。为了解决这个问题,统计学家们提出了一个阈值,如果犯第一类错误的概率小于这个阈值,就认为可以拒绝原假设,否则认为不足以拒绝原假设。这个阈值就叫 α

另一种流程

现在,让我们尝试引入 α ,用另一种流程解决例1:

  1. 建立原假设和备择假设
    H0:μ20
    H1:μ<20

  2. 确定α
    α=0.05 ( α 的值通常为0.01,0.05,0.1,视具体问题而定)

  3. 确定用于决策的拒绝域
    在确定了 α 和t统计量自由度(根据样本容量可以求出,在这个例子中,自由度为[样本容量-1])的前提下,我们可以通过查询t分位数表,找出“拒绝域”,如果t统计量落入拒绝域内,就拒绝原假设,否则接收原假设。
    根据t分位数表,我们查出当自由度为9时, t1.833 的概率为0.05,因此,拒绝域为{ t |t1.833}

  4. 查看样本结果是否位于拒绝域内
    将样本均值和样本标准差带入t统计量计算公式,得出t=-3.00,落入拒绝域内

  5. 做出决策
    拒绝原假设 H0 ,接受备择假设 H1 ,认为样本均值与总体均值差异显著,认为所有的引擎排放量平均值小于20ppm

以上就是t检验的标准化流程。

假设形式与拒绝域的推广

在例1中,我们的假设形式为:
H0:μx0
H1:μ<x0 ( x0 为某一常数)
拒绝域的形式为{ t|tc } ( c 为某一常数),如果用数轴表示,形如:
这里写图片描述
假设的形式与拒绝域的形式有没有什么联系呢?
为了进一步讨论,我们将假设的形式做如下分类:
类别1:备择假设中包含
1.1 H0:μ=x0 vs H1:μx0
类别2:备择假设中包含 ><
2.1 H0:μ=x0 vs H1:μ>x0
2.2 H0:μ=x0 vs H1:μ<x0
2.3 H0:μx0 vs H1:μ<x0
2.4 H0:μx0 vs H1:μ>x0
注意:原假设和备择假设不一定将数轴全部覆盖,在实际生活中,形如2.1和2.2的问题是存在的

类别1称为双尾检验,由于备择假设中包含 ,拒绝域分布在两侧
这里写图片描述
类别2称为单尾检验
备择假设中包含 > 的情形,拒绝域在数轴右侧
这里写图片描述
备择假设中包含<的情形,拒绝域在数轴左侧
这里写图片描述

t检验的分类

t检验分为单总体t检验和双总体t检验

单总体t检验

检验一个样本平均数与一个已知的总体平均数差异是否显著。
适用条件:
1.总体服从正态分布
2.样本量小于30(当样本量大于30时,用Z统计量)
统计量:

t=x¯μS/nt(n1)

x¯ ——样本均值
μ ——总体均值
S ——样本标准差
n——样本容量
例1就是单样本t检验的例子。

双总体t检验

检验两个样本各自所代表的总体的均值差异是否显著,包括独立样本t检验和配对样本t检验

独立样本t检验

检验两个独立样本所代表的总体均值差异是否显著。
适用条件:
1.两样本均来自于正态总体
2.两样本相互独立
3.满足方差齐性(两总体方差相等)
统计量:

t=x¯y¯Sw1m+1nt(m+n2)

其中
Sw=1m+n+1[(m1)S21+(n1)S22]

x¯ ——第一个样本均值
y¯ ——第二个样本均值
m ——第一个样本容量
n——第二个样本容量
S21 ——第一个样本方差
S22 ——第二个样本方差

配对样本t检验

检验两个配对样本所代表的总体均值差异是否显著。
配对样本主要包含以下两种情形:
1.同源配对,也就是同质的对象分别接受两种不同的处理。例如:为了验证某种记忆方法对改善儿童对词汇的记忆是否有效,先随机抽取40名学生,再随机分为两组。一组使用该训练方法,一组不使用,三个月后对这两组的学生进行词汇测验,得到数据。问该训练方法是否对提高词汇记忆量有效?
2.自身配对
2.1某组同质对象接受两种不同的处理。例如:某公司推广了一种新的促销方式,实施前和实施后分别统计了员工的业务量,得到数据。试问这种促销方式是否有效?
适用条件:
每对数据的差值必须服从正态分布
统计量:

t=xd¯Sd/n

两配对样本对应元素做差后形成的新样本
xd¯ ——新样本均值
Sd ——新样本标准差
n ——新样本容量

附录

什么是t分布

t分布的形状与正态分布很相似,都是中间高,两端低的“钟形”,当t分布的自由度为无穷大时,其形状与正态分布相同,随着自由度的减小,t分布的中间变低,两端变高,与正态分布相比更加“平坦”。

为什么t统计量服从t分布

单样本t检验

x1,x2,,xn来自正态分布总体 N(μ,σ2) ,则
均值 x¯=1nni=1xi
方差 S2=1n1ni=1(xix¯)2
且有:
1. x¯ S2 相互独立
2. x¯N(μ,σ2μ)
3. (n1)S2σ2χ2(n1)
所以:
x¯μσ/nN(0,1)
(n1)S2σ2χ2(n1)
所以:
x¯μσ/n/(n1)S2σ2/(n1)=x¯μS/nt(n1)

独立样本t检验

x1,x2,,xn 来自正态分布总体 N(μ1,σ21)
y1,y2,,yn 来自正态分布总体 N(μ2,σ22)
且两样本是独立的
σ1 σ2 已知: x¯y¯N(μ1μ2,σ21m+σ22n)

μ=(x¯y¯)(μ1μ2)σ21m+σ22nN(0,1)

σ1 σ2 未知时:
σ21=σ22=σ2 时, x¯y¯N(μ1μ2,(1m+1n)σ2)
因为:
1σ2mi=1(xix¯)2χ2(m1)
1σ2ni=1(yiy¯)2χ2(n1)
所以:
1σ2mi=1(xix¯)2+1σ2ni=1(yiy¯)2χ2(m+n2)
因卡方分布 χ2 具有可加性
S2w=1m+n2[mi=1(xix¯)2+ni=1(yiy¯)2]
t=(x¯y¯)(μ1μ2)Sw1m+1n

当假设两总体均值相等,即 μ1=μ2 时:
t=x¯y¯Sw1m+1n

其中:
Sw=1m+n2[(m1)S21+(n1)S22]

配对样本t检验

可将两配对样本对应元素做差,得到新样本,这个新样本可视作单样本,与单样本t检验统计量证明方法相同。

p值参照表

p值碰巧的概率对原假设统计意义
P>0.05碰巧出现的可能性不大于5%不能否定原假设两组差别无显著意义
P<0.05碰巧出现的可能性小于5%可以否定原假设两组差别有显著意义
p<0.01碰巧出现的可能性小于1%可以否定原假设两组差别有非常显著意义

t分位数表

单侧75%80%85%90%95%97.50%99%99.50%99.75%99.90%99.95%
双侧50%60%70%80%90%95%98%99%99.50%99.80%99.90%
111.3761.9633.0786.31412.7131.8263.66127.3318.3636.6
20.8161.0611.3861.8862.924.3036.9659.92514.0922.3331.6
30.7650.9781.251.6382.3533.1824.5415.8417.45310.2112.92
40.7410.9411.191.5332.1322.7763.7474.6045.5987.1738.61
50.7270.921.1561.4762.0152.5713.3654.0324.7735.8936.869
60.7180.9061.1341.441.9432.4473.1433.7074.3175.2085.959
70.7110.8961.1191.4151.8952.3652.9983.4994.0294.7855.408
80.7060.8891.1081.3971.862.3062.8963.3553.8334.5015.041
90.7030.8831.11.3831.8332.2622.8213.253.694.2974.781
100.70.8791.0931.3721.8122.2282.7643.1693.5814.1444.587
110.6970.8761.0881.3631.7962.2012.7183.1063.4974.0254.437
120.6950.8731.0831.3561.7822.1792.6813.0553.4283.934.318
130.6940.871.0791.351.7712.162.653.0123.3723.8524.221
140.6920.8681.0761.3451.7612.1452.6242.9773.3263.7874.14
150.6910.8661.0741.3411.7532.1312.6022.9473.2863.7334.073
160.690.8651.0711.3371.7462.122.5832.9213.2523.6864.015
170.6890.8631.0691.3331.742.112.5672.8983.2223.6463.965
180.6880.8621.0671.331.7342.1012.5522.8783.1973.613.922
190.6880.8611.0661.3281.7292.0932.5392.8613.1743.5793.883
200.6870.861.0641.3251.7252.0862.5282.8453.1533.5523.85
210.6860.8591.0631.3231.7212.082.5182.8313.1353.5273.819
220.6860.8581.0611.3211.7172.0742.5082.8193.1193.5053.792
230.6850.8581.061.3191.7142.0692.52.8073.1043.4853.767
240.6850.8571.0591.3181.7112.0642.4922.7973.0913.4673.745
250.6840.8561.0581.3161.7082.062.4852.7873.0783.453.725
260.6840.8561.0581.3151.7062.0562.4792.7793.0673.4353.707
270.6840.8551.0571.3141.7032.0522.4732.7713.0573.4213.69
280.6830.8551.0561.3131.7012.0482.4672.7633.0473.4083.674
290.6830.8541.0551.3111.6992.0452.4622.7563.0383.3963.659
300.6830.8541.0551.311.6972.0422.4572.753.033.3853.646
400.6810.8511.051.3031.6842.0212.4232.7042.9713.3073.551
500.6790.8491.0471.2991.6762.0092.4032.6782.9373.2613.496
600.6790.8481.0451.2961.67122.392.662.9153.2323.46
800.6780.8461.0431.2921.6641.992.3742.6392.8873.1953.416
1000.6770.8451.0421.291.661.9842.3642.6262.8713.1743.39
1200.6770.8451.0411.2891.6581.982.3582.6172.863.163.373
  • 202
    点赞
  • 729
    收藏
    觉得还不错? 一键收藏
  • 18
    评论
### 回答1: student t检验是一种统计方法,用于检验两组样本均值是否存在显著差异。它基于t分布的理论,适用于小样本情况下。在t检验中,我们首先假设两组样本的均值相等,然后计算出一个t值,然后根据t值去查t分布表得出其对应的显著性水平。 student t检验通常包括以下几个步骤: 1. 建立假设:设置原假设(H0)和备择假设(H1)。原假设通常是两组样本均值相等,备择假设则是两组样本均值不相等。 2. 选择显著性水平:根据实际问题的要求,选择一个适当的显著性水平,常见的有0.05和0.01。 3. 计算t值:通过计算两组样本的均值、标准差和样本量,计算出t值。 4. 查表:根据计算得到的t值,查找t分布表找出对应的临界值。 5. 判断:通过比较t值和临界值,判断该差异是否显著。如果t值小于临界值,则差异不显著,接受原假设;反之,如果t值大于临界值,则差异显著,拒绝原假设。 student t检验可以用于许多实际问题的研究,比如比较两种药物的疗效、不同教学方法的效果等。它的优点是计算简单、普遍适用于小样本情况下,但也有一些前提条件需要满足,比如样本要求独立、正态分布等。 总之,student t检验是用于比较两组样本均值是否存在显著差异的统计方法,通过计算t值并与临界值比较,来进行判断。在实际应用中,我们可以根据问题的具体需求和数据的特点选择是否采用student t检验来进行统计分析。 ### 回答2: 学生t检验是一种用于比较两个样本均值差异是否显著的统计方法。该检验通常用于小样本情况下,且样本符合正态分布的情况下。 学生t检验的原理是通过计算两个样本的均值差异与标准误之间的比值来确定检验统计量t的值。其中标准误是由样本标准差和样本大小所决定。通过对自由度和显著性水平的设定,可以在t分布表中查找相应的临界值,进而判断两个样本均值差异是否显著。 学生t检验主要用于以下情况: 1. 比较两组样本的均值是否有显著差异,例如比较两个班级的平均分是否有显著差异。 2. 检验一个样本在不同时间点或条件下的均值变化是否显著,例如比较同一组学生在两次考试中的平均分是否有显著差异。 学生t检验的使用步骤包括: 1. 设定原假设和备择假设。 2. 收集两个样本的数据,计算两个样本的平均值、标准差和样本大小。 3. 计算检验统计量t的值。 4. 在t分布表中查找相应的临界值。 5. 比较检验统计量t的值和临界值,判断两个样本均值差异是否显著。 6. 根据判断结果,得出结论并进行进一步的解释。 学生t检验在实际应用中具有重要意义,可以帮助我们从统计学的角度评估两个样本之间的差异,并得出科学和可靠的结论。但需要注意的是,在使用学生t检验时要满足一些前提条件,例如样本的独立性、正态分布和方差齐性等。如果样本不满足这些条件,可能需要考虑使用其他的统计方法。 ### 回答3: Student t检验是一种统计方法,用于判断两组样本均值是否有显著差异。它是基于t分布理论,通过比较两组样本的均值和方差来判断差异的显著性。 在进行Student t检验之前,我们要先做出一些假设。首先,我们提出原假设(H0)和备择假设(H1),其中原假设为“两组样本均值相等”,备择假设为“两组样本均值不相等”。然后,选择适当的t检验类型(单样本t检验、配对样本t检验或独立样本t检验)来计算t值。 在执行t检验时,我们计算得到一个t统计值,该值与自由度(根据样本大小确定)一起参考t分布表,得到p值。p值表示根据观察到的样本数据,计算得到结果的概率。当p值小于事先设定的显著性水平(通常为0.05)时,我们就可以拒绝原假设,认为两组样本均值之间存在显著差异。 Student t检验的应用广泛,可以用于比较不同治疗方法的效果、分析两组样本之间的差异、判断实验条件对实验结果的影响等。此外,Student t检验也有一些限制,如对数据满足正态分布和方差齐性的要求等。 总之,Student t检验是一种常用的统计方法,用于比较两组样本均值是否有显著差异。通过计算t值和p值来进行判断,可以帮助研究者对数据进行分析和决策。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值