MapReduce 分布式计算框架

本质(是什么)

分布式计算框架,是一种编程模型,思想:分而治之

作用(干什么)

离线大数据计算,主要解决海量离线数据的批处理。

优缺点

优点

易于编程(简单实现了一些接口,就可以完成一个分布式程序)
良好的扩展性(可以增加机器)
高容错性(计算任务可以从一个节点转移到另一个节点)
适合海量数据的离线处理

缺点

不擅长实时计算(不能做到像mysql那样毫秒或者秒级的返回结果)
不擅长流式计算(mapReduce的输入数据集是静态的)
不擅长DAG(有向图)计算 (因为每个MapReduce作业的结果都会写入磁盘,产生大量磁盘io,影响性能)

架构(有什么)

在这里插入图片描述
四部分组成
a.Client

把用户编写的MapReduce程序提交到JobTracker端
用户通过client提供的一些接口查看作业运行状态

b.JobTracker

负责资源监控和作业调度
监控所有的taskTracker和job的健康状态,一旦失败就将相应的任务转移到其他节点
跟踪任务的执行进度和资源使用量,并将这些信息告诉任务调度器

c.taskTracker

会周期性通过心跳将本节点的资源使用情况和任务运行进度汇报给JobTracker
接收JobTracker发过来的命令并执行
用”sort“等量划分本节点的资源,将sort 分配给task

d.task

分为map task  和 reduce task 两种,均由taskTracker启动
slot分为MapSlot和ReduceSlot两种 

流程(怎么运作)

运行流程

在这里插入图片描述

  1. 在客户端启动一个作业
  2. 向jobTracker 请求一个job id
  3. 将运行作业需要的资源文件复制到hdfs上。
  4. JobTracker接收到作业后,将作业放到一个作业队列中,等到作业调度器对其进行调度,当作业调度器根据自己的调度算法调度到该作业时,会根据划分信息为每一个划分创建一个map任务,并将map任务分配给taskTracker执行
  5. TaskTracker会每隔一段时间给JobTracker发送一个心跳,告诉JobTracker他仍然在运行,并带着map任务的相关信息

计算流程

整体流程:Input Split --> Map --> Combiner(optional) --> Shuffle --> Reduce --> Output

mapper阶段

reduce阶段

在这里插入图片描述

mr计算详细流程图

在这里插入图片描述
1.切片

在FileInputFormat中,计算切片大小的逻辑:Math.max(minSize, Math.min(maxSize, blockSize))
minSize的默认值是1,而maxSize的默认值是long类型的最大值,即可得切片的默认大小是blockSize(128M)
maxSize参数如果调得比blocksize小,则会让切片变小,而且就等于配置的这个参数的值
minSize参数调的比blockSize大,则可以让切片变得比blocksize还大
hadoop为每个分片构建一个map任务,可以并行处理多个分片上的数据,整个数据的处理过程将得到很好的负载均衡,因为一台性能较强的计算机能处理更多的数据分片.
分片也不能切得太小,否则多个map和reduce间数据的传输时间,管理分片,构建多个map任务的时间将决定整个作业的执行时间.(大部分时间都不在计算上)
如果文件大小小于128M,则该文件不会被切片,不管文件多小都会是一个单独的切片,交给一个maptask处理.如果有大量的小文件,将导致产生大量的maptask,大大降低集群性能.

大量小文件的优化策略:

(1) 在数据处理的前端就将小文件整合成大文件,再上传到hdfs上,即避免了hdfs不适合存储小文件的缺点,又避免了后期使用mapreduce处理大量小文件的问题。(最提倡的做法)

(2)小文件已经存在hdfs上了,可以使用另一种inputformat来做切片(CombineFileInputFormat),它的切片逻辑和FileInputFormat(默认)不同,它可以将多个小文件在逻辑上规划到一个切片上,交给一个maptask处理。

2.环形缓存区

经过map函数的逻辑处理后的数据输出之后,会通过OutPutCollector收集器将数据收集到环形缓存区保存。
环形缓存区的大小默认为100M,当保存的数据达到80%时,就将缓存区的数据溢出到磁盘上保存。
3.溢出

环形缓存区的数据达到其容量的80%时就会溢出到磁盘上进行保存,在此过程中,程序会对数据进行分区(默认HashPartition)和排序(默认根据key进行快排)
缓存区不断溢出的数据形成多个小文件
4.合并

溢出的多个小文件各个区合并在一起(0区和0区合并成一个0区),形成大文件
通过归并排序保证区内的数据有序
5.shuffle

从过程2到过程7之间,即map任务和reduce任务之间的数据流称为shuffle(混洗),而过程5最能体现出混洗这一概念。一般情况下,一个reduce任务的输入数据来自与多个map任务,多个reduce任务的情况下就会出现如过程5所示的,每个reduce任务从map的输出数据中获取属于自己的那个分区的数据。

6.合并

运行reducetask的节点通过过程5,将来自多个map任务的属于自己的分区数据下载到本地磁盘工作目录。这多个分区文件通过归并排序合并成大文件,并根据key值分好组(key值相同的,value值会以迭代器的形式组在一起)。

7.reducetask

reducetask从本地工作目录获取已经分好组并且排好序的数据,将数据进行reduce函数中的逻辑处理。

8.输出

每个reducetask输出一个结果文件。

常用(必会)

常见问题(必知)

1、Hadoop分块和分片介绍一下?

分块
作用:为了方便文件的管理和备份,分块是数据存储的逻辑划分(hdfs存储)
块儿是hdfs存储系统中的最小单位,默认一个块儿是64兆,一个块儿存储在一个datanode

分片
作用:分片是数据处理的输入逻辑划分(MapReduce计算)
计算过程数据可能会很多,所以把数据分成小片,便于计算,一个分片对应一个map

默认分片大小与分块大小是相同

//分片的 默认参数:minSize=1字节,maxSize=1L(1长整型)
//分片和分块都是默认的话:片儿的大小 = 块儿的大小
protected long computeSplitSize(long goalSize, long minSize, long blockSize) {
    return Math.max(minSize , Math.min(maxSize, 块的大小));
}

为了获得高性能,所以提倡数据本地化,一个块儿存储在一个节点上,所以一个片也最好在是这个节点上的。
如果 片儿size > 块儿size,那么片儿的数据会包括两个块儿的数据(两个),也就是包括两个节点的数据,违背数据本地化

2、整个MapReduce作业的阶段主要可以分为以下四种:

1、Input-Map-Reduce-Output

2、Input-Map-Output

3、Input-Multiple Maps-Reduce-Output

4、Input-Map-Combiner-Reduce-Output

3、map个数如何确定

源码:根据 block块儿大小、设定的片的minSize、maxSize大小三个值,计算出片儿的大小

//计算出 片的大小
return Math.max(minSize , Math.min(maxSize, 块的大小));

再根据 片儿的大小、片儿的偏移量、块儿的列表,获取片的信息(路径、偏移量、块儿的副本列表信息、缓存信息)及片儿个数,就是map的个数

异议

有差错或者需要补充的地方,还望大家评论指出,并详细论证,相互学习,共同进步哈!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值