kafka

本质(是什么)(我在试着讲明白)

分布式消息系统,默认保存磁盘,默认保存7天

作用(干什么)(我在试着讲明白)

提供消息队列

  • 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作。
  • 可扩展性:kafka集群支持热扩展
  • 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
  • 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)
  • 高并发:支持数千个客户端同时读写

架构(有什么)(我在试着讲明白)

在这里插入图片描述
producer、

  1. producer
    消息生产者,两种机制,1.轮询,2.key的hash 。如果key 是null ,就是轮询,如果key 非null,按照key 的hash
  2. broker
    组成kafka集群的节点,broker之间没有主从关系,依赖zookeeper协调。每个broker可以管理多个partition
    broker的作用:负责消息的读写和存储。
  3. topic
    一类消息/消息队列。
    每个topic是由多个partition 组成,为了提高并行度。由几个组成?可以创建指定。
  4. partition
    组成topic的单元,直接接触磁盘,消息是append到每个partition上的
    每个partition内部消息是强有序的。FIFO.
    每个partition有副本,几个副本?创建topic时,可以指定
  5. consumer
    每个consumer都有自己的消费者组
    每个消费者组在消费同一个topic时,这个topic中数据只能被消费一次
    不同的消费者组消费同一个topic互不影响
    kafka 0.8 之前 consumer 自己在zookeeper中维护消费者offset
    kafka 0.8之后,consumer的offset是通过kafka 集群来维护的
  6. zookeeper
    存储原数据,broker,topic,partition…
    kafka 0.8之前还可以存储消费者offset

优缺点(我在试着讲明白)

优点

  1. 解耦
    在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

  2. 冗余(副本)
    有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。

  3. 扩展性
    因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。扩展就像调大电力按钮一样简单。

  4. 灵活性&峰值处理能力
    在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见;如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

  5. 可恢复性
    系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

  6. 顺序保证
    在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。Kafka保证一个Partition内的消息的有序性。

  7. 缓冲
    在任何重要的系统中,都会有需要不同的处理时间的元素。例如,加载一张图片比应用过滤器花费更少的时间。消息队列通过一个缓冲层来帮助任务最高效率的执行———写入队列的处理会尽可能的快速。该缓冲有助于控制和优化数据流经过系统的速度。

  8. 异步通信
    很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

缺点

流程(怎么运作)(我在试着讲明白)

常用(必会)(我在试着讲明白)

kafkac常用命令

  1. 创建topic
    ./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic topic2017 --partitions 3 --replication-factor 3
  2. 查看当前集群中topic
    ./kafka-topics.sh --list --zookeeper node3:2181,node4:2181,node5:2181
  3. 控制台当做生产者
    ./kafka-console-producer.sh --topic topic2017 --broker-list node1:9092,node2:9092,node3:9092
  4. 控制台当做消费者
    ./kafka-console-consumer.sh --zookeeper node3:2181,node4:2181,node5:2181 --topic topic2017
  5. 查看topic的详细信息
    ./kafka-topics.sh --describe --zookeeper node3:2181,node4:2181,node5:2181 --topic topic2017
  6. 删除topic
    ./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --delete --topic t1205
    删除存储位置的当前topic信息
    zookeeper中删除原数据信息

常见问题(必知)(我在试着讲明白)

异议

有差错或者需要补充的地方,还望大家评论指出,并详细论证,相互学习,共同进步哈!

发布了22 篇原创文章 · 获赞 2 · 访问量 1527
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览