模型搭建

本文介绍了如何利用Keras库构建深度学习模型,包括选择模型、构建网络层、编译、训练和预测的步骤。内容提及了Sequential类用于快速建立神经网络,keras.preprocessing.image的图片增强功能,以及GlobalMaxPooling2D、Conv2DTranspose层的作用。同时提到了数据预处理方法,如utils.to_categorical和tf.one_hot将数字转换为分类数组。
摘要由CSDN通过智能技术生成

模型程序

选择模型 —> 构建网络层 —> 编译 —> 训练 —> 预测

Sequential() 通过Sequential类可快速堆叠出一个神经网络模型

model = Sequential()

图片来源:博客园的Anita-ff
在这里插入图片描述

keras

keras.preprocessing.image的包,图片增强

ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值