DP-棋盘类

题目: 矩阵路径最小之和
前沿: 这个题目同样是典型的DP类型解决的问题,需要考虑到前面状态和当前状态的迭代问题,属于简单的DP问题。

代码:

class Solution {
public:
    /**
     * 
     * @param matrix int整型vector<vector<>> the matrix
     * @return int整型
     */
    int minPathSum(vector<vector<int> >& matrix) {
//         int m = matrix.size();
//         int n = matrix[0].size();
//         if(m == 0 || n == 0) return 0;
        vector<vector<int>> dp(matrix.size(), vector<int>(matrix[0].size(),-1));
        dp[0][0] = matrix[0][0];
        for(int i=1;i<matrix.size();i++) dp[i][0] = dp[i-1][0] + matrix[i][0];
        for(int i=1;i<matrix[0].size();i++) dp[0][i] = dp[0][i-1] + matrix[0][i];
        for(int i=1;i<matrix.size();i++)
            for(int j=1;j<matrix[0].size();j++){
                dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + matrix[i][j];
            }
        return dp[matrix.size()-1][matrix[0].size()-1];
    }
};

Note: 一定要注意边界处理,也就是所谓的是否数组越界等问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值