题目描述 Description
如图,A 点有一个过河卒,需要走到目标 B 点。卒行走规则:可以向下、或者向右。同时在棋盘上的任一点有一个对方的马(如上图的C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点。例如上图 C 点上的马可以控制 9 个点(图中的P1,P2 … P8 和 C)。卒不能通过对方马的控制点。
棋盘用坐标表示,A 点(0,0)、B 点(n,m)(n,m 为不超过 20 的整数,并由键盘输入),同样马的位置坐标是需要给出的(约定: C不等于A,同时C不等于B)。现在要求你计算出卒从 A 点能够到达 B 点的路径的条数。
1<=n,m<=15
输入描述 Input Description
键盘输入
B点的坐标(n,m)以及对方马的坐标(X,Y){不用判错}
输出描述 Output Description
屏幕输出
一个整数(路径的条数)。
样例输入 Sample Input
6 6 3 2
样例输出 Sample Output
17
我将坐标全部加了3,这样就不用判断马脚的坐标越界了。(不知题目中这句“不用判错”是什么意思。。。)
#include<iostream>
#include<cassert>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
#include<iterator>
#include<cstdlib>
#include<vector>
#include<stack>
#include<map>
#include<set>
using namespace std;
#define rep(i,f,t) for(int i = (f),_end_=(t); i <= _end_; ++i)
#define rep2(i,f,t) for(int i = (f),_end_=(t); i < _end_; ++i)
#define dep(i,f,t) for(int i = (f),_end_=(t); i >= _end_; --i)
#define dep2(i,f,t) for(int i = (f),_end_=(t); i > _end_; --i)
#define clr(c, x) memset(c, x, sizeof(c) )
typedef long long int64;
const int INF = 0x5f5f5f5f;
const double eps = 1e-8;
//*****************************************************
int64 d[30][30];
int main()
{
int n,m,x,y;
scanf("%d%d%d%d",&n,&m,&x,&y);
n+=3;m+=3;x+=3;y+=3;
d[x][y] = -1;
d[x-1][y-2] = d[x-2][y-1] = -1;
d[x+1][y+2] = d[x+2][y+1] = -1;
d[x-1][y+2] = d[x-2][y+1] = -1;
d[x+1][y-2] = d[x+2][y-1] = -1;
d[3][3] = 1;
for(int i = 4; i <= m; ++i)if(d[3][i]==0)d[3][i] = d[3][i-1];else d[3][i] = 0;
for(int i = 4; i <= n; ++i)if(d[i][3]==0)d[i][3] = d[i-1][3];else d[i][3] = 0;
for(int i = 4; i <= n; ++i)for(int j = 4; j <= m; ++j)
{
if(d[i][j] == 0){
d[i][j] = d[i-1][j] + d[i][j-1];
}else{
d[i][j] = 0;
}
}
cout<<d[n][m]<<endl;
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。