Convex Optimization: 2 Convex sets

本篇为凸优化的课程笔记。

Affine set 仿射集

在这里插入图片描述
过两个点 x 1 , x 2 x_1,x_2 x1,x2 的直线上所有点形成仿射集。

这个例子可以玩味一下:线性方程组 { x ∣ A x = b } \{x|Ax=b\} {xAx=b} 的解集是仿射集,证明如下:
A x 1 = b ,   A x 2 = b A x = A ( θ x 1 + ( 1 − θ ) x 2 ) = θ A x 1 + ( 1 − θ ) A x 2 = θ b + ( 1 − θ ) b = b \begin{aligned} Ax_1&=b,\ Ax_2=b\\ Ax&=A(\theta x_1+(1-\theta)x_2)\\ &=\theta Ax_1+(1-\theta)Ax_2\\ &=\theta b+(1-\theta)b=b \end{aligned} Ax1Ax=b, Ax2=b=A(θx1+(1θ)x2)=θAx1+(1θ)Ax2=θb+(1θ)b=b

Convex set 凸集

在这里插入图片描述
凸集则是两个点之间的线段形成的集合。

Convex combination and convex hull 凸组合与凸包

在这里插入图片描述
凸组合为点的线性组合,其中每个参数要求大于等于零,且参数和为1. 集合 S S S 的凸包则为 S S S 中所有点的凸组合。

Convex cone 凸锥

在这里插入图片描述
凸锥组合类似凸组合,不同之处在于参数的和没有等于 1 这一限制,但是每个参数仍要大于等于零。凸锥则为集合中所有点的凸锥组合形成的集合。

Hyperplanes and halfspaces 超平面与半空间

在这里插入图片描述
在这里插入图片描述
超平面既是仿射集又是凸集;半空间只是凸集。

Euclidean balls and ellipsoids 欧几里得球和椭球

在这里插入图片描述
在这里插入图片描述
欧几里得球是距离中心点的二范数小于 r r r 的点集, r r r 是该球的半径。椭球也有相应的表示。

需要注意的是在椭球的第一种表示中 { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } \{x|(x-x_c)^TP^{-1}(x-x_c)\le1\} {x(xxc)TP1(xxc)1} 中的 P P P 和集合是一一对应的,也就是说相同集合对应的矩阵 P P P 是唯一的,此处 P P P 是一个对称的正定矩阵。

而在第二种表示中 { x c + A u ∣ ∥ u ∥ 2 ≤ 1 } \{x_c+Au|\|u\|_2\le 1\} {xc+Auu21},此处的矩阵 A A A 不唯一,假如把 A A A 换成 A Q AQ AQ,其中 Q Q Q 是一个正交矩阵,那么这个集合仍然不变,因为相当于是对 u u u 先做了一下旋转。而假如限定矩阵 A A A 必须是一个对称正定矩阵的话, A A A 就变成唯一的了(证明方法是对 A A A 进行奇异值分解)。

Norm balls and norm cones 范数球与范数锥

在这里插入图片描述
范数是一个函数,其满足三个条件:

  1. 非负性, 只在 x = 0 x=0 x=0 的时候结果才是零
  2. 齐次性
  3. 三角不等式

欧几里得范数锥也叫做二阶锥。范数球和范数锥都是凸的。

Polyhedra 多面体

在这里插入图片描述
在这里插入图片描述

Positive semidefinite cone 半正定锥

在这里插入图片描述

Operations that preserve convexity 保持凸性的操作

在这里插入图片描述

Intersection 取交

在这里插入图片描述
凸集的交集仍是凸集,PPT给的这个例子很妙,见板书里的证明。

Affine function 仿射函数

在这里插入图片描述
仿射函数更加一般的说法叫做线性函数。一个凸集经过仿射函数的变换后仍是凸集,反过来也是一样的,凸集经过逆变换之后仍是凸集。注意有可能实际方程的逆变换并不存在,但是凸集经过逆变换之后仍是凸集的这个关系是存在的。

仿射函数的例子有:缩放,平移,投影。

还有双曲锥(hyperbolic cone):
在这里插入图片描述
(?什么是双曲锥)

Perspective and linear-fractional function 透视函数与分式线性函数

在这里插入图片描述
在这里插入图片描述

Generalized inequalities 推广的不等式

在这里插入图片描述
在这里插入图片描述

一个凸锥 K ⊆ R n K\sube\mathcal{R}^n KRn,当它满足以下三个条件时,被称作是一个真锥(proper cone):

  1. K K K 是闭的(closed),即包含边界
  2. K K K 是实在的(solid), 即其内部是非空的,比如一条射线是一个锥,但是这个射线内部是空的(点都在边界上)
  3. K K K 是 pointed 的,意思是不包含直线,比如说一条直线(双向延申)是一个锥,但不是一个真锥,也就是说真锥意味着是单向延申的。

举几个栗子:

  • 非负象限: K = R + n = { x ∈ R n ∣ x i ≥ 0 , i = 1 , . . . , n } K=\mathcal{R}_+^n=\{x\in\mathcal{R}^n|x_i\ge 0,i=1,...,n\} K=R+n={xRnxi0,i=1,...,n}
  • 半正定锥 K = S + n K=\mathcal{S}_+^n K=S+n
  • [ 0 , 1 ] [0,1] [0,1] 上的非负多项式:

K = { x ∈ R n ∣ x 1 + x 2 t + x 3 t 2 + ⋯ + x n t n − 1 ≥ 0  for  t ∈ [ 0 , 1 ] } K=\{x\in\mathcal{R}^n|x_1+x_2t+x_3t^2+\cdots+x_nt^{n-1}\ge 0\text{ for }t\in[0,1]\} K={xRnx1+x2t+x3t2++xntn10 for t[0,1]}

generalized inequality 推广不等式:

定义一个真锥 K K K,则:

x ⪯ K y    ⟺    y − x ∈ K , x ≺ K y    ⟺    y − x ∈ i n t K x\preceq_Ky\iff y-x\in K,\quad x\prec_Ky\iff y-x\in\mathbf{int}K xKyyxK,xKyyxintK

x x x 在真锥 K K K 范围内小于等于 y y y,则说明其差值在真锥范围内;假如是严格小于,则其差值在真锥内部的点中(就是说不在边界上, i n t \mathbf{int} int 表示 interitor)

举几个例子:

  • 每个元素的不等式( K = R + n K=\mathcal{R}_+^n K=R+n,即 K K K 是非负实数),则:

x ⪯ R + n y    ⟺    x i ≤ y i ,    i = 1 , . . . , n x\preceq_{\mathcal{R}_+^n}y\iff x_i\le y_i,\ \ i=1,...,n xR+nyxiyi,  i=1,...,n

  • 矩阵不等式( K = S + n K=\mathcal{S}_+^n K=S+n

X ⪯ S + n Y    ⟺    Y − X 是半正定的 X\preceq_{S_+^n}Y\iff Y-X \text{是半正定的} XS+nYYX是半正定的

这两种类型很常见,所以有时会扔掉下标 K K K

性质: ⪯ K \preceq_K K 的性质很多和 R \mathcal{R} R ≤ \le 的性质类似,比如:

x ⪯ K y , u ⪯ K v    ⟹    x + u ⪯ K y + v x\preceq_K y,u\preceq_K v\implies x+u\preceq_K y+v xKy,uKvx+uKy+v

Minimum and minimal elements

在这里插入图片描述

⪯ K \preceq_K K 并不是一个全序的(linear/total ordering),可以有 x ⋠ K y x\npreceq_Ky xKy 并且 y ⋠ K x y\npreceq_Kx yKx,也就是说这两个元素是不可比较的(incomparable)

比如说在 K = R + 2 K=\mathcal{R}_+^2 K=R+2 上:

[ 2 1 ] ⋠ [ 1 2 ] 并且 [ 2 1 ] ⋡ [ 1 2 ] \begin{bmatrix} 2\\ 1 \end{bmatrix} \npreceq \begin{bmatrix} 1\\ 2 \end{bmatrix} \text{并且} \begin{bmatrix} 2\\ 1 \end{bmatrix} \nsucceq \begin{bmatrix} 1\\ 2 \end{bmatrix} [21][12]并且[21][12]

也就是说这两个向量是不可比较的。

由此引出了很有趣的概念,在此意义下,最小值有两个概念:

x ∈ S x\in S xS ⪯ K \preceq_K K 上是 the minimum element 时,

y ∈ S    ⟹    x ⪯ K y y\in S\implies x\preceq_K y ySxKy

x ∈ S x\in S xS ⪯ K \preceq_K K 上是 a minimal element 时,

y ∈ S , y ⪯ K x    ⟹    y = x y\in S,y\preceq_K x\implies y=x yS,yKxy=x

比如 K = R + 2 K=\mathcal{R}_+^2 K=R+2
在这里插入图片描述
minimum 是唯一的,并且有可能不存在,根据定义 S 1 S_1 S1 中任何一个点都要和 x 1 x_1 x1 能够比较,并且 x 1 x_1 x1 要小于等于他们,此时 x 1 x_1 x1 为 the minimum

minimal 是不唯一的,意思是假如说 S 2 S_2 S2 中存在点 y y y 是可以和 x 2 x_2 x2 相比较,并且 y y y 小于 x 2 x_2 x2,那么 y y y 一定等于 x 2 x_2 x2,此时 x 2 x_2 x2 是一个 minimal element,,图中 S 2 S_2 S2 左下角边上所有的点都是 minimal element

两种类型的判断方法:

  • minimum:过该点画一个锥 K K K,保证集合 S S S 中的点全在锥中
  • minimal:过该点画一个反向锥,保证集合 S S S 中只有一个点(也就是该点)在这个反向锥中

Separating hyperplane theorem 分离超平面定理

在这里插入图片描述

Supporting hyperplane theorem 支撑超平面定理

在这里插入图片描述

Dual cones and generalized inequalities 对偶锥以及推广不等式

在这里插入图片描述
在这里插入图片描述

Minimum and minimal elements via dual inequalities

在这里插入图片描述
在这里插入图片描述

optimal production frontier

在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值