mit 6.851 Advanced Data Structures L19 Dynamic Graphs I : Link-Cut Tree

视频链接

截图的笔记来源

在这里插入图片描述
主要思路是维护一个有根(无序)树的森林,保证每个操作的分摊复杂度为 O ( log ⁡ ( n ) ) O(\log(n)) O(log(n)),用平衡树来表示不平衡树。

在这里插入图片描述
在这里插入图片描述

access(v) 是核心操作。笔记中有一个笔误,见图片中的箭头

在这里插入图片描述
有了 access 之后,其他函数都很好写。

在这里插入图片描述
开始对复杂度进行分析,核心是分析 access 的复杂度,首先给出了一个 O ( log ⁡ 2 n ) O(\log^2n) O(log2n) 的界,这个界是通过重链剖分来得到的。

在这里插入图片描述
在这里插入图片描述
根据 splay 的势能分析法可以得到一个更紧的界: O ( log ⁡ n ) O(\log{n}) O(logn)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>