Codeforces Round #439 (Div. 2) C 869C The Intriguing Obsession(思维+简单组合)

41 篇文章 0 订阅
24 篇文章 0 订阅

题意.
三组岛屿,要求在岛屿间建桥,每一个桥距离为1.但是每一种建法,必须满足两个同组的岛屿要不就不可达,要不最短距离至少为3.
思路.
考虑到不可出现同组岛屿间有任何桥,所以仅考虑不同组岛屿的情况.
又不能出现两个同组间距离为2的情况,也就是,不可有任意两同组岛屿连在同一岛上.那么,考虑a,b两组岛屿,要使他们之间满足要求,(假设a < b),只需计算A(b,i)*C(a,i)(i=0,1,…,a)的总和即可.也就是从a中选择i个岛屿来建立到b的桥梁,而b中也仅仅能有i个岛接受,(不可能有任何一座岛,接着两个桥).这个排列应该是容易理解的.
存两个模版,一个是此题用的杨辉三角,一个是卢卡斯的.

/*  xzppp  */
#include <iostream>
#include <vector>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <string>
#include <cmath>
#include <set>
#include <bitset>
#include <iomanip>
using namespace std;
#define debug(x) std::cerr << #x << " = " << (x) << std::endl
#define FFF freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define MP make_pair
#define PB push_back
#define _ %MOD
typedef long long  LL;
typedef unsigned long long ULL;
typedef pair<int,int > pii;
typedef pair<LL,LL> pll;
typedef pair<double,double > pdd;
typedef pair<double,int > pdi;
const int MAXM = 2e3+17;
const int MAXV = 2*1e3+17;
const int BIT = 15+3;
const int INF = 0x7fffffff;
const LL INFF = 0x3f3f3f3f3f3f3f3f;
const int MOD = 998244353;
const int MAXN = 5e3+17;  
LL C[MAXN][MAXN];  
void comb(LL n, LL m, LL p)
{  
    memset(C, 0, sizeof(C));  
    C[0][0] = 1;  
    for(int i = 0; i <= n; i++)
    {  
        C[i][0] = C[i][i] = 1;  
        for(int j = 1; j < i; j++)  
            C[i][j] = (C[i-1][j-1] + C[i-1][j]) % p;  
    }
}
LL perm(LL n,LL m)
{
    LL c = C[n][m],d = 1;
    for (int i = 1; i <= m; ++i)
        d = (d*i)%MOD;
    LL res = (c*d)%MOD;
    return res;
} 
int main()
{   
    #ifndef ONLINE_JUDGE
    FFF
    #endif
    comb(5000, 5000, MOD);
    vector<LL > vec(3);
    cin>>vec[0]>>vec[1]>>vec[2];
    sort(vec.begin(), vec.end());
    LL a,b,c;
    a = b = c = 0;
    for (int i = 0; i <= vec[0]; ++i)
    {
        a = (a+(perm(vec[1],i)*C[vec[0]][i])_)_;
        c = (c+(perm(vec[2],i)*C[vec[0]][i])_)_;
    }
    for (int i = 0; i <= vec[1]; ++i)
        b = (b+(perm(vec[2],i)*C[vec[1]][i])_)_;
    cout<<((a*b)_*c)_<<endl;
    return 0;
}
/*  xzppp  */
#include <iostream>
#include <vector>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <string>
#include <cmath>
#include <set>
#include <bitset>
#include <iomanip>
using namespace std;
#define debug(x) std::cerr << #x << " = " << (x) << std::endl
#define FFF freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define MP make_pair
#define PB push_back
#define _ %MOD
typedef long long  LL;
typedef unsigned long long ULL;
typedef pair<int,int > pii;
typedef pair<LL,LL> pll;
typedef pair<double,double > pdd;
typedef pair<double,int > pdi;
const int MAXM = 2e3+17;
const int MAXV = 2*1e3+17;
const int BIT = 15+3;
const int INF = 0x7fffffff;
const LL INFF = 0x3f3f3f3f3f3f3f3f;
const int MOD = 998244353;
const int MAXN = 2e4+17;  
LL qm(LL a, LL b)  
{  
    LL ans = 1;  
    a %= MOD;  
    while(b)  
    {  
        if(b & 1)  
        {  
            ans = ans * a % MOD;  
            b--;  
        }  
        b >>= 1;  
        a = a * a % MOD;  
    }  
    return ans;  
}  
LL comb(LL n, LL m)  
{  
    if(m > n) return 0;  
    LL ans = 1;  
    for(int i=1; i<=m; i++)  
    {  
        LL a = (n + i - m) % MOD;  
        LL b = i % MOD;  
        ans = ans * (a * qm(b, MOD-2) % MOD) % MOD;  
    }  
    return ans;  
}  

LL Lucas(LL n, LL m)  
{  
    if(m == 0) return 1;  
    return comb(n % MOD, m % MOD) * Lucas(n / MOD, m / MOD) % MOD;  
}  
LL perm(LL n,LL m)
{
    LL c = comb(n,m),d = 1,res;
    for (int i = 1; i <= m; ++i)
        d = (d*i)%MOD;
    res = (c*d)%MOD;
    return res;
}
int main()
{    
    #ifdef GoodbyeMonkeyKing
    FFF
    #endif

    return 0;
}

反思.
我特么是真的好笨啊,这题想了那么久,一直在想剪去不可行情况,留下可行情况,搞各种容斥,也没什么其他理由了,就是蠢吧.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值