重量级——>轻量级:1.解决神经网络越来越大、计算量越来越大的问题;2.离实际应用更进一步
图像:分类问题、分隔问题、定位问题、检测问题
分类:图像包含的主要物体 李飞飞:imagenet
包含三类:语义级、细粒度、实例级
实例级分类:识别出每一个实例
正确率比较高:对角线的值高
图像分类具体应用:
Vggnet存在问题:模型太大,计算的参数量大
Resnet(网络很深):提出“残差”模块的概念,解决梯度消失的问题
重量级——>轻量级:1.解决神经网络越来越大、计算量越来越大的问题;2.离实际应用更进一步
图像:分类问题、分隔问题、定位问题、检测问题
分类:图像包含的主要物体 李飞飞:imagenet
包含三类:语义级、细粒度、实例级
实例级分类:识别出每一个实例
正确率比较高:对角线的值高
图像分类具体应用:
Vggnet存在问题:模型太大,计算的参数量大
Resnet(网络很深):提出“残差”模块的概念,解决梯度消失的问题