📢标题:AI象棋对弈项目翻车现场!实测主流大模型竟集体"智商掉线"?
游戏体验地址:AI象棋
AI象棋
AI象棋
https://www.51aitools.com/chess.html
一、🤖 项目简介:当传统象棋遇上AI聊天对弈
我开发了一个融合象棋对弈与智能聊天的网页游戏AI象棋,用户既可与AI切磋棋艺,还能实时进行策略交流。然而在实测过程中发现:同一棋局不同模型的走棋逻辑差异巨大!
二、🔍 API测试截图:
通过对比同一初始棋局下不同API的响应:
红方先手(炮二进七),不同的AI的回复结果截图
1、📊 红方先手(炮二进七)
2、📊 kimi (月之暗面模型: moonshot-v1-128k)
3、📊 豆包 (火山引擎模型: Doubao-1.5-pro-32k)
4、📊 Deepseek-V3 (火山引擎模型: DeepSeek-V3满血版671B模型)
5、📊 Deepseek-R1 (火山引擎模型: DeepSeek-R1满血版671B模型)
6、📊 Deepseek-V3 (腾讯云模型: DeepSeek-V3满血版671B模型)
7、📊 Deepseek-R1 (腾讯云模型: DeepSeek-R1满血版671B模型)
8、📊 Deepseek-V3 (Deepseek模型: DeepSeek-V3)
最正确的走法的模型是: Deepseek-R1 (腾讯云模型: DeepSeek-R1满血版671B模型)
三、🔍 网页测试截图
对比同一初始棋局下不同网页的回复:
1、kimi黑棋走法:是不合理的
2、豆包黑棋走法:还是不合理的
3、Deepseek-r1黑棋走法:也是不合理的
四、🔍 promp详情如下:
# 当前prompt模板
你是一个专业的象棋大师AI引擎。你执黑棋,请仔细分析当前局面,给出最佳着法。
棋盘坐标系统说明:
1. 棋盘为10行9列的矩阵,坐标系统为[行,列],从左上角[0,0]开始
2. 红方在下方(第6-9行),黑方在上方(第0-3行)
3. 中间第4-5行为楚河汉界
4. 棋子类型包括:帅(将)、仕(士)、相(象)、马、车、炮、兵(卒)
当前局面:
=== 局势概览 ===
红方总子力:16(价值:47)
黑方总子力:15(价值:43)
=== 重要棋子分布 ===
红方:
- 车:2个
- 马:2个
- 炮:2个
黑方:
- 车:2个
- 马:1个
- 炮:2个
=== 当前棋盘状态 ===
红方棋子位置:
- 车在[9,0]、[9,8]
- 马在[9,1]、[9,7]
- 相在[9,2]、[9,6]
- 仕在[9,3]、[9,5]
- 帅在[9,4]
- 炮在[0,7]、[7,1]
- 兵在[6,0]、[6,2]、[6,4]、[6,6]、[6,8]
黑方棋子位置:
- 车在[0,0]、[0,8]
- 马在[0,1]
- 象在[0,2]、[0,6]
- 士在[0,3]、[0,5]
- 将在[0,4]
- 炮在[2,1]、[2,7]
- 卒在[3,0]、[3,2]、[3,4]、[3,6]、[3,8]
=== 战术要点分析 ===
中路控制:双方均势
车马配合:双方均无明显车马配合
炮的布置:黑方双炮连线
将帅安全:
- 红方帅存在威胁
- 黑方将存在威胁
过河子:红方0个过河兵 黑方0个过河卒
=== 威胁和机会 ===
难度级别:medium
分析要求:
分析流程
1. 扫描所有红方攻击范围 → 生成威胁热力图
2. 对3星以上威胁 → 计算最佳化解方案(保护/反击/牵制)
3. 若无紧急威胁 → 执行预设进攻策略
4. 输出着法时需满足:
- 价值交换评分 ≥ 1.2
- 后续2步内无致命反杀风险 6. 返回格式要求:
只返回一个JSON对象,包含以下字段:
- fromRow: 起始行(0-9)
- fromCol: 起始列(0-8)
- toRow: 目标行(0-9)
- toCol: 目标列(0-8)
- pieceType: 棋子类型(车|马|炮|兵|相|仕|帅)
- color: black
注意事项:
1. 每步棋需要符合象棋规则,比如马走日,相走田
2. 优先考虑战术点控制
3. 注意子力配合和灵活性
4. 平衡攻防态势
5. 你是黑棋,color固定传值black
6. 返回的必须是合法的JSON格式
7. 不要返回任何分析过程
8. 不要使用markdown代码块
🧐 问题定位:可能存在的问题
- API参数污染:不同厂商的API可能对某些参数有隐藏限制
- 象棋知识库缺失:部分模型缺乏专业棋谱训练数据
🛠️ 优化方案征集中!(已尝试方向)
✅ 尝试prompt 优化:
(注:本游戏为实验性项目,实际效果受API稳定性影响,持续优化中…)