由前序遍历和中序遍历可以重构二叉树,通过给定的前序遍历(preOrder)和中序遍历数组(inOrder)。
思路是:
首先,在中序遍历中找到与前序遍历首元素相同的元素,然后,可以把前序遍历和中序遍历分割为四个数组,前序遍历的两个分割数组表示根结点左右子树的前序遍历;中序遍历的两个分个数组表示根结点左右子树的中序遍历,最后,通过递归的方式不断向下寻找根结点,直到所有结点分割完成。
C++代码实现:
#include<vector>
using namespace std;
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int _x) :val(_x), left(NULL), right(NULL) {}; //初始化
};
TreeNode* reCon_BT(vector<int> preOrder, vector<int> inOrder) { //传入前序遍历和中序遍历的两个vector数组
int len = inOrder.size();
if (len == 0)
return NULL;
int index;
vector<int> left_pre, right_pre;
vector<int> left_in, right_in;
for (int i = 0; i < len; ++i) {
if (inOrder[i] == preOrder[0]) {
index = i; //index表示根结点
break;
}
}
for (int i = 0; i < index; ++i) {
left_in.push_back(inOrder[i]);
left_pre.push_back(preOrder[i+1]); //去掉头结点了
}
for (int i = index + 1; i < len; ++i) {
right_in.push_back(inOrder[i]);
right_pre.push_back(preOrder[i]);
}
TreeNode* root = new TreeNode(preOrder[0]); //新建一个根结点
root->left = reCon_BT(left_pre,left_in);
root->right = reCon_BT(right_pre,right_in); //递归的遍历左右子树
return root;
}