【利用Python进行数据分析】Numpy基础:数组和矢量计算

本文介绍了Python数据分析库Numpy的基础知识,包括ndarray的创建、索引、切片、转置、数学与统计方法、排序、唯一化、文件输入输出以及线性代数相关操作。重点讲解了数组的创建、数据类型转换、布尔型索引和矩阵运算,为数据处理提供基础工具。
摘要由CSDN通过智能技术生成

Numpy的部分功能:

对于大数据分析,作者最关心的功能是

一、ndarray:一种多维数据对象【行内直接称为数组】

可以直接相加,得到的结果为对应元素的相加;可以直接乘以一个数,得到的结果为对应元素的乘积。

每个数组都有一个shape和一个dtype

1.创建ndarray

data=[1,2,3,4]

arr1=np.array(data)

arr1:array([1,2,3,4])

如果没有特殊说明的话,python会为array自动匹配一个合适的数据类型,可以通过arr.dtype查询

np.zeros和np.ones可以创建指定长度或形状的全0或全1数组。

empty可以创建一个没有具体值的数组。

np.arange可以创建数组版的range:

numpy中,如果没有特别指定,数据类型基本都是float64.

ndarray的astype方法可以显式转换dtype

例:arr1.astype(np.int32)

2.基本索引和切片

这意味着如果不使用copy方法的话,对切片的任何修改都会反映到原数据上。

这两种方式是等价的:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值