DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting以及pytorch代码实现

Huang S, Wang D, Wu X, et al. DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019: 2129-2132.
原文链接:
https://doi.org/10.1145/3357384.3358132
代码链接(Pytorch):
https://github.com/bighuang624/DSANet

Motivation

  1. Traditional methods fail to capture complicated nonlinear dependencies between time steps and between multiple time series.
  2. Recurrent neural network and attention mechanism have been used to model periodic temporal patterns across multiple time steps. However, these models fit not well for time series with dynamic-period patterns or nonperiodic patterns.

Dual self-attention network (DSANet) :
Highly efficient multivariate time series forecasting, especially for dynamic-period or nonperiodic series.

Model

在这里插入图片描述

  1. Global Temporal Convolution:
    Extract time-invariant patterns of all time steps for univariate time series.
  2. Local Temporal Convolution:
    Time steps with a shorter relative distance have a larger impact on each other.
    Focus on modeling local temporal patterns.
  3. Self-Attention Module:
    Strong feature-extraction capability of self-attentional networks.
    Capture the dependencies between different series.
    Scaled dot product self-attention:
    在这里插入图片描述
    Position-wise feed-forward:
    在这里插入图片描述
  4. Autoregressive Component:
    Due to the nonlinearity of both convolutional and self-attention components, the scale of neural network output is not sensitive to that of input.
    The classical AR model is taken as the linear component.
  5. Generation of Prediction:
    First use a dense layer to combine the outputs of two self-attention modules;
    Then obtained by summing the self-attention based prediction and the AR prediction.

Experiment

Gas station service company:
Daily revenue of five gas stations ranging from 2015.12.1-2018.12.1.
The stations are geographically close, which means a complex mix of revenue promotion and mutual exclusion exists between them.
training (60%), validation (20%) and test (20%).

mini-batch stochastic gradient descent (SGD) with the Adam optimizer , loss is MSE
dropout rate : 0.1

root relative squared error (RRSE), mean absolute error (MAE) and empirical correlation coefficient (CORR)
在这里插入图片描述
在这里插入图片描述
(1) The best result on each window-horizon pair is obtained by complete DSANet, showing all components have contributed to the effectiveness and robustness of the whole model;
(2) The performance of DSAwoAR significantly drops, showing that the AR component plays a crucial role. The reason is that AR is generally robust to the scale changing in data according to [10];
(3) DSAwoGlobal and DSAwoLocal also suffer from performance loss but less than removing the AR component.This is because features learned by the two branches coincide. In other words, when one branch is removed, some of the lost features can be obtained from the other branch.

pytorch版本的代码详解可以参考此链接:https://blog.csdn.net/itnerd/article/details/106266829

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Crossformer是一种利用交叉维度依赖性进行多元时间序列预测的Transformer模型。这个模型的动机是填补之前Transformer在处理多元时间序列时对不同变量之间关系刻画不足的问题。之前的Transformer更多地关注如何通过时间维度的注意力机制建立时序上的关系,而忽略了变量之间的关系。Crossformer通过引入时间维度和变量维度两个阶段的注意力机制来解决这个问题。特别是在变量维度上,Crossformer提出了一种高效的路由注意力机制。这篇论文填补了多元时间序列预测中变量关系建模的空白,并在ICLR2023中被提出。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *3* [【ICLR 2023】 CrossFormer增强多元时间序列建模能力](https://blog.csdn.net/qq_33431368/article/details/129483613)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [读论文《Crossformer:利用跨维度依赖进行多变量时间序列预测的Transform》](https://blog.csdn.net/vzvzvzv/article/details/131376526)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值