[IJCAI 2017]A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction

                                A Dual-Stage Attention-Based

             Recurrent Neural Network for Time Series Prediction

       论文提出了基于注意力机制的两阶段循环神经网络(DA-RNN),在第一阶段(encoder),引入input attention mechanism对每一时刻的外部输入自适应性地提取相关性;在第二阶段(decoder),引入temporal attention mechanism捕获encoder的长期时序依赖信息。


任务

       时间序列预测,给定1~T-1时刻的目标序列以及1~T-1时刻的外部序列,预测T时刻的目标值。

模型结构

          DA-RNN

encoder

       1.使用LSTM作为encoder和decoder,其中状态更新如下:

                                         

       2.引入input attention mechanism:对每一时刻Xt的n维变量使用attention

                                             

 

       3.使用(α^t)t对Xt加权求和,更新Xt:

                                                       

       4.使用(Xt)~更新1中的状态方程:

                                                               

decoder

        1.引入temporal attention mechanism:在decoder的第t时刻,对encoder所有隐藏层状态做attention

                                              

        2.计算t时刻的上下文向量ct:

                                                               

        3.利用ctct更新目标序列的输入值y(t−1)为y(t−1)~:

                                                           

        4.更新第t时刻decoder的隐藏层状态dt:

                                                               

         其中f2的更新状态方程如encoder-1

                                                         

                                      

        则第t时刻的预测值(Tt)^为:

                                                      

实验

        作者在两个数据集上和ARIMA,NARX RNN,Encoder-Decoder,Attention RNN模型进行了比较,均获得了最好的结果。

                                     

  • 2
    点赞
  • 8
    收藏
  • 打赏
    打赏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Merlin17Crystal33

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值