A Dual-Stage Attention-Based
Recurrent Neural Network for Time Series Prediction
论文提出了基于注意力机制的两阶段循环神经网络(DA-RNN),在第一阶段(encoder),引入input attention mechanism对每一时刻的外部输入自适应性地提取相关性;在第二阶段(decoder),引入temporal attention mechanism捕获encoder的长期时序依赖信息。
任务
时间序列预测,给定1~T-1
时刻的目标序列以及1~T-1
时刻的外部序列,预测T时刻的目标值。
模型结构
encoder
1.使用LSTM作为encoder和decoder,其中状态更新如下:
2.引入input attention mechanism:对每一时刻Xt的n维变量使用attention
3.使用(α^t)t对Xt加权求和,更新Xt:
4.使用(Xt)~更新1
中的状态方程:
decoder
1.引入temporal attention mechanism:在decoder的第t时刻,对encoder所有隐藏层状态做attention
2.计算t时刻的上下文向量ct:
3.利用ctct更新目标序列的输入值y(t−1)为y(t−1)~:
4.更新第t时刻decoder的隐藏层状态dt:
其中f2的更新状态方程如encoder-1
:
则第t时刻的预测值(Tt)^为:
实验
作者在两个数据集上和ARIMA,NARX RNN,Encoder-Decoder,Attention RNN模型进行了比较,均获得了最好的结果。