linux安装torch_geometric

本文指导如何在Python环境中创建虚拟环境,安装CUDA、PyTorch及其相关库(如Torchvision和torch-geometric),并确保版本匹配。步骤包括设置环境、检查CUDA版本、下载并安装所需软件包,以支持深度学习研究和实践。
摘要由CSDN通过智能技术生成
  • 创建新的虚拟环境
conda create -n py37 python=3.7
  • 进入虚拟环境
conda activate py37
  • 查看本机的cuda版本以及python版本
 /usr/local/cuda/bin/nvcc -V
 python

在这里插入图片描述
在这里插入图片描述

cd /home/xxxx(usr_name)/cu101
  • 安装torch和torchvision,查看torch.version.cuda版本是否与nvcc的版本相同
pip install torch-1.5.1+cu101-cp37-cp37m-linux_x86_64.whl
pip install torchvision-0.6.1+cu101-cp37-cp37m-linux_x86_64.whl
python -c "import torch; print(torch.version.cuda)"
python -c "import torch; print(torch.__version__)"

在这里插入图片描述

  • pip install安装torch-geometric所需要的对应版本的依赖包以及torch-geometric
pip install --no-index torch_scatter -f https://pytorch-geometric.com/whl/torch-1.5.0+cu101.html
pip install --no-index torch_sparse -f https://pytorch-geometric.com/whl/torch-1.5.0+cu101.html
pip install --no-index torch_cluster -f https://pytorch-geometric.com/whl/torch-1.5.0+cu101.html
pip install --no-index torch_spline_conv -f https://pytorch-geometric.com/whl/torch-1.5.0+cu101.html
pip install torch-geometric==1.5.0
  • pip list可以看出我们所安装的包都安装成功
    在这里插入图片描述
  • python 之后import可以看出导入成功,到此安装成功,如果未安装成功,可以尝试删除此虚拟环境,create一个新的进行再次尝试

在这里插入图片描述

参考链接:
https://blog.csdn.net/qq_40329272/article/details/111801695
https://github.com/rusty1s/pytorch_geometric/issues/999
pytorch-geometric的官方链接,希望对大家有用
https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值