torch对应的torchvision版本

安装torch和torchvision时,两者之间存在依赖关系,版本需要对应起来。

torchtorchvisionpython
1.6.00.7.0>=3.6
1.5.10.6.1>=3.5
1.5.00.6.0>=3.5
1.4.00.5.0==2.7, >=3.5, <=3.8
1.3.10.4.2==2.7, >=3.5, <=3.7
1.3.00.4.1==2.7, >=3.5, <=3.7
1.2.00.4.0==2.7, >=3.5, <=3.7
1.1.00.3.0==2.7, >=3.5, <=3.7
<=1.0.10.2.2==2.7, >=3.5, <=3.7

参考:
https://www.cnblogs.com/lyl0618/p/13323010.html

PyTorch是一个很受欢迎的机器学习框架,特别适合于深度学习任务。与其他深度学习框架一样,PyTorch也在不断发展和更新。 PyTorch框架本身是torch包,而torchvision是基于torch的一个额外的库,用于处理计算机视觉相关的任务,如图像分类、目标检测、图像分割等。因此,本文将分别介绍torchtorchvision版本对应关系。 首先是torch版本torch的兼容性。目前PyTorch官方最新版本是1.9.0,而与之兼容的torch版本1.8.1,1.7.1,1.6.0,1.5.0,1.4.0,1.3.0,1.2.0,1.1.0,1.0.0,0.4.1。需要注意的是,在使用PyTorch 1.0.0及更早版本时,需要额外安装torchvision。同时,PyTorch的CPU版与CUDA版本需要分别使用相应的torch版本。 其次是torchvision版本torch版本的兼容性。目前最新版本torchvision是0.10.0,与PyTorch 1.9.0兼容。而与其他PyTorch版本的兼容性如下: - PyTorch 1.8.1对应torchvision 0.9.1 - PyTorch 1.7.1对应torchvision 0.8.2 - PyTorch 1.6.0对应torchvision 0.7.0 - PyTorch 1.5.0对应torchvision 0.6.0 - PyTorch 1.4.0对应torchvision 0.5.0 - PyTorch 1.3.0对应torchvision 0.4.1 综上所述,torchtorchvision版本兼容关系需要根据实际的PyTorch版本进行匹配。在使用PyTorchtorchvision时,需要注意版本之间的兼容性,以确保代码的正确运行。如果使用不兼容的版本,可能会导致错误甚至崩溃。因此,建议在使用前仔细查阅官方文档,了解所使用PyTorch版本对应torchtorchvision版本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值