FTRL的FM公式推导和实现

本文详细解析了FTRL框架下FM算法的数学推导和实现过程,探讨了在不同算法(如LR和FM)中,FTRL作为统一框架的应用,重点关注了预测值y平的表达式及求导过程,旨在深入理解并优化推荐系统和广告点击率预估等场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注解:

如上是针对y的取值为-1或者1.

当y的取值为0或者1时,公式为:(后续添加)

 

、y平 是sigmoid的输出值,即预测值。针对不同的算法,该值对应的X的表达式步一样。

如果是LR,后期优化,算法就是最简单的LR+FTRL

如果是FM,后期优化,算法就是FM+FTRL。

FTRL是框架,如上这一步,针对所有的算法都相同。不同之处在于y平的表达式,再求W的导数的时候不同。

 

FTRL的FM公式推导和实现FTRL的FM公式推导和实现

 转载:http://castellanzhang.github.io/2016/10/16/fm_ftrl_softmax/

https://blog.csdn.net/imgxr/article/details/80126245

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值