YOLOv8的Python基础--函数篇

1. 文件/目录操作相关函数

这些函数来自 os 和 shutil 模块:

函数/用法作用示例说明
os.listdir(dir)列出目录下所有文件名os.listdir("./images")返回文件名列表(不包含路径)
os.path.join()拼接路径os.path.join("dir", "file.txt")跨平台安全拼接路径(Windows/Linux兼容)
os.path.splitext()分割文件名和扩展名name, ext = os.path.splitext("img.jpg")返回 ("img", ".jpg")
os.path.exists()检查文件/目录是否存在os.path.exists("label.txt")返回 True/False
os.makedirs()递归创建目录os.makedirs("dir/subdir", exist_ok=True)exist_ok=True 避免目录已存在时报错
os.path.basename()获取路径中的文件名os.path.basename("/data/img.jpg")返回 "img.jpg"
shutil.copy(src, dst)复制文件shutil.copy("a.txt", "backup/a.txt")如果目标目录不存在会报错

2. 数据处理相关函数

函数/用法作用示例说明
random.random()生成0-1之间的随机数if random.random() < 0.2:用于随机分配数据集
range(len()) + tqdm()带进度条的循环for i in tqdm(range(100)):显示处理进度(来自tqdm库)

3. 代码中未直接使用但导入的库

虽然导入但未实际使用的库及其典型用途:

  • cv2 (OpenCV):图像读取/处理(如 cv2.imread()

  • matplotlib.pyplot (plt):数据可视化(如 plt.plot()

  • numpy (np):数值计算(如 np.array()

### 实现 Shape-IoU 损失函数替换默认损失函数 为了在YOLOv10中实现Shape-IoU损失函数并替换默认的损失函数,可以遵循类似的修改路径。具体操作如下: #### 修改 `metrics.py` 文件 首先,在 `ultralytics/utils/metrics.py` 文件中加入Shape-IoU计算逻辑。此文件通常用于定义各种评估指标。 ```python def shape_iou(pred_bboxes, target_bboxes): """ Calculate the Shape-IoU between predicted and target bounding boxes. Args: pred_bboxes (Tensor): Predicted bounding box coordinates. target_bboxes (Tensor): Ground truth bounding box coordinates. Returns: Tensor: IoU values for each pair of bboxes. """ # Implementation details here... pass # Placeholder for actual implementation ``` #### 更新 `loss.py` 文件 接着,在 `ultralytics/utils/loss.py` 文件中引入新定义的Shape-IoU方法,并调整原有的IoU调用位置。 ```python from .metrics import shape_iou # Import custom function from metrics module class ComputeLoss(nn.Module): def __init__(self, model, autobalance=False): super().__init__() def forward(self, preds, targets): ... # Replace original IOU calculation with Shape-IoU iou = shape_iu(pred_bboxes[fg_mask], target_bboxes[fg_mask]) ... ``` 通过上述更改,可以在训练过程中应用新的Shape-IoU损失函数来优化模型性能[^2]。 #### 验证配置项设置 最后确认项目中的配置文件(如`.yaml`),确保其指向更新后的脚本版本,以便于顺利加载自定义组件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

派晟电子工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值