一、explain(),语句分析工具
MongoDB 3.0+的explain有三种模式,分别是:queryPlanner
、executionStats
、allPlansExecution
。现实开发中,常用的是executionStats
模式,主要分析这种模式。
> db.getCollection('customer').find({"age":{"$lte":2000}}).explain("executionStats")
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "personmap.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$lte" : 2000.0
}
},
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"age" : 1.0
},
"indexName" : "age_1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"age" : [
"[-1.#INF, 2000.0]"
]
}
}
},
"rejectedPlans" : []
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 2001,
"executionTimeMillis" : 143,
"totalKeysExamined" : 2001,
"totalDocsExamined" : 2001,
"executionStages" : {
"stage" : "FETCH",
"nReturned" : 2001,
"executionTimeMillisEstimate" : 0,
"works" : 2002,
"advanced" : 2001,
"needTime" : 0,
"needFetch" : 0,
"saveState" : 16,
"restoreState" : 16,
"isEOF" : 1,
"invalidates" : 0,
"docsExamined" : 2001,
"alreadyHasObj" : 0,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 2001,
"executionTimeMillisEstimate" : 0,
"works" : 2002,
"advanced" : 2001,
"needTime" : 0,
"needFetch" : 0,
"saveState" : 16,
"restoreState" : 16,
"isEOF" : 1,
"invalidates" : 0,
"keyPattern" : {
"age" : 1.0
},
"indexName" : "age_1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"age" : [
"[-1.#INF, 2000.0]"
]
},
"keysExamined" : 2001,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : 0,
"matchTested" : 0
}
}
},
"serverInfo" : {
"host" : "qinxiongzhou",
"port" : 27017,
"version" : "3.0.7",
"gitVersion" : "6ce7cbe8c6b899552dadd907604559806aa2e9bd"
},
"ok" : 1.0
}
对queryPlanner分析
queryPlanner: queryPlanner的返回
queryPlanner.namespace:该值返回的是该query所查询的表
queryPlanner.indexFilterSet:针对该query是否有indexfilter
queryPlanner.winningPlan:查询优化器针对该query所返回的最优执行计划的详细内容。
queryPlanner.winningPlan.stage:最优执行计划的stage,这里返回是FETCH,可以理解为通过返回的index位置去检索具体的文档(stage有数个模式,将在后文中进行详解)。
queryPlanner.winningPlan.inputStage:用来描述子stage,并且为其父stage提供文档和索引关键字。
queryPlanner.winningPlan.stage的child stage,此处是IXSCAN,表示进行的是index scanning。
queryPlanner.winningPlan.keyPattern:所扫描的index内容,此处是did:1,status:1,modify_time: -1与scid : 1
queryPlanner.winningPlan.indexName:winning plan所选用的index。
queryPlanner.winningPlan.isMultiKey是否是Multikey,此处返回是false,如果索引建立在array上,此处将是true。
queryPlanner.winningPlan.direction:此query的查询顺序,此处是forward,如果用了.sort({modify_time:-1})将显示backward。
queryPlanner.winningPlan.indexBounds:winningplan所扫描的索引范围,如果没有制定范围就是[MaxKey, MinKey],这主要是直接定位到mongodb的chunck中去查找数据,加快数据读取。
queryPlanner.rejectedPlans:其他执行计划(非最优而被查询优化器reject的)的详细返回,其中具体信息与winningPlan的返回中意义相同。
对executionStats返回逐层分析
第一层,executionTimeMillis
最为直观explain返回值是executionTimeMillis值,指的是我们这条语句的执行时间,这个值当然是希望越少越好。
其中有3个executionTimeMillis,分别是:
executionStats.executionTimeMillis:该query的整体查询时间;
executionStats.executionStages.executionTimeMillisEstimate:查询根据index去检索document获得2001条数据的时间;
executionStats.executionStages.inputStage.executionTimeMillisEstimate:查询扫描2001行index所用时间
第二层,index与document扫描数与查询返回条目数
这个主要讨论3个返回项,nReturned、totalKeysExamined、totalDocsExamined,分别代表该条查询返回的条目、索引扫描条目、文档扫描条目。
这些都是直观地影响到executionTimeMillis,我们需要扫描的越少速度越快。
对于一个查询,我们最理想的状态是:nReturned=totalKeysExamined=totalDocsExamined
第三层,stage状态分析
那么又是什么影响到了totalKeysExamined和totalDocsExamined?是stage的类型。类型列举如下:
COLLSCAN:全表扫描
IXSCAN:索引扫描
FETCH:根据索引去检索指定document
SHARD_MERGE:将各个分片返回数据进行merge
SORT:表明在内存中进行了排序
LIMIT:使用limit限制返回数
SKIP:使用skip进行跳过
IDHACK:针对_id进行查询
SHARDING_FILTER:通过mongos对分片数据进行查询
COUNT:利用db.coll.explain().count()之类进行count运算
COUNTSCAN:count不使用Index进行count时的stage返回
COUNT_SCAN:count使用了Index进行count时的stage返回
SUBPLA:未使用到索引的$or查询的stage返回
TEXT:使用全文索引进行查询时候的stage返回
PROJECTION:限定返回字段时候stage的返回
对于普通查询,我希望看到stage的组合(查询的时候尽可能用上索引):
Fetch+IDHACK
Fetch+ixscan
Limit+(Fetch+ixscan)
PROJECTION+ixscan
SHARDING_FITER+ixscan
COUNT_SCAN
不希望看到包含如下的stage:COLLSCAN(全表扫描),SORT(使用sort但是无index),不合理的SKIP,SUBPLA(未用到index的$or),COUNTSCAN(不使用index进行count)
二、索引操作
1、查询集合索引
> db.getCollection('customer').getIndexes()
2、查看索引集合大小
> db.getCollection('customer').totalIndexSize()
3、创建普通索引
#1 表示升序,-1 表示降序
> db.customer.ensureIndex({"tags":1}) 或者
> db.customer.createIndex({"tags":1}) 或者
> db.getCollection('customer').createIndex({"tags":1})
4、文档索引
> db.getCollection('customer').createIndex({"content.title":1, "content.judgementType":1}) 或者
> db.getCollection('customer').ensureIndex({"content.title":1, "content.judgementType":1}) 或者
> db.customer.createIndex({"content.title":1, "content.judgementType":1}) 或者
> db.customer.ensureIndex({"content.title":1, "content.judgementType":1})
#让创建索引的过程在后台运行
> db.getCollection('customer').createIndex({"content.title":1, "content.judgementType":1},{background:true})
5、唯一索引
> db.customer.ensureIndex({"content.title":1, "content.judgementType":1},{unique: true})
6、强制使用索引
#hint 命令可以强制使用某个索引
> db.customer.find({age:{$lt:30}}).hint({name:1, age:1}).explain()
7、删除索引
#删除集合所有索引
db.getCollection('customer').dropIndexes()
#删除集合指定索引
db.getCollection('customer').dropIndex('索引名')
三、注意事项
1、MongoDB中低效率的操作符
“$where"和”$exists":这两个操作符,完全不能使用索引。
“$ne”:通常来说取反的效率比较低。"$ne"查询可以使用索引,但并不是很有效。因为他必须查看所有的索引条目,而不是"$ne"指定的条目,这个时候他就不得不扫描整个索引。
“$not”:有时候能够使用索引,但是他通常并不知道要如何使用索引。所以大多数情况"$not"会退化为全表扫描。
“$nin”:这个操作符总是会全表扫描
2、OR查询
MongoDB在一次查询中只能使用一个索引(至少我现在用的2.6是这样的),如果你在{“x”:1}上有一个索引,在{“y”:1}上也有一个索引,在{“x”:1,“y”:1}上执行查询时,MongoDB只会使用其中一个索引,而不是两个一起使用。"$or"是一个例外,"$or"可以对每个字句都使用索引,因为"$or"实际上是执行两次查询然后将结果合并。
通常来说,使用or查询多次在合并结果,不如单次查询的效率高,对于单个字段,应该尽可能使用$in。
3、MongoDB的查询优化器
MongoDB的查询优化器与其他数据库的稍微不同。基本来说,如果一个索引能够精确匹配一个查询,那么查询优化器就会使用这个索引,如果不能精确匹配,可能会有几个索引都适合你的查询。那MongoDB是怎样选择的呢?答:MongoDB的查询计划会将多个索引并行的去执行,最早返回100个结果的就是胜者,其他查询计划都会被终止。
这个查询计划会被缓冲,接下来的这个查询都会使用他,下面几种情况会重新计划;
4、何时不应该使用索引
提取较小的子数据集时,索引非常有效(所以才有了分页)。也有一些查询不使用索引会更快。结果集在原集合中所占的比例越大,查询效率越慢。因为使用索引需要进行两次查找:一次查找索引条目,一次根据索引指针去查找相应的文档。而全表扫描只需要进行一次查询。在最坏的情况,使用索引进行查找次数会是全表扫描的两倍。效率会明显比全表扫描低。
可惜并没有一个严格的规则可以告诉我们,如果根据索引大小、文档大小来判断什么时候索引很有用,一般来说,如果查询需要返回集合内30%的文档(或者更多),那就应该测试全表扫描和走索引查询那个速度比较快。这个数字也会在2%~60%之间进行波动。
这个时候可以使用hint({"$natural":true})强制查询走全表扫描。