描述
光棍们,今天是光棍节。聪明的NS想到了一个活动来丰富这个光棍节。
规则如下:
每个光棍在一个纸条上写一个自己心仪女生的名字,然后把这些纸条装进一个盒子里,这些光 棍依次抽取一张纸条,如果上面的名字就是自己心仪的女生,那么主持人就在现场给该女生打电话,告诉这个光棍对她的爱慕之情,并让光棍当场表白,并得到现场所有人的祝福,没抽到的,嘿嘿就可以幸免了。
假设一共有N个光棍,其中有M个没有抽到自己的纸条,求发生这种情况一共有多少种可能.。
-
输入
- 每行包含两个整数N和M(1<M<=N<=20),以EOF结尾。 输出
-
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
样例输入
-
2 23 2
样例输出
-
13
可以把本题分解为经典的错排题+排列组合(先认为n个人全部拿错,之后选择哪n个人拿错)
错排(两种情况)直接递推打表,排列组合可以定义函数计算,也可以根据公式递推打表(主要边界情况!!!)
部分结果需要用ll int,int是不够的!
#include <cstdio>
#define N 21
//long long int fac(int x)
//{
// long long int re=1;
// for(int i=1;i<=x;i++)
// {
// re=re*i;
// }
// return re;
//}
//long long int C(int n,int m)
//{
// return fac(n)/(fac(m)*fac(n-m));
//}
int main()
{
long long int C[N][N];
C[1][0]=C[1][1]=1;
for(int i=2;i<=20;i++)
{
C[i][0] = C[i][i] = 1;
for(int j=1;j<i;j++)
{
C[i][j]=C[i-1][j]+C[i-1][j-1];
}
}
long long int a[N];
a[1]=0;
a[2]=1;
a[3]=2;
for(int i=4;i<=20;i++)
{
a[i]=(i-1)*a[i-1]+(i-1)*a[i-2];
}
int m,n;
while(scanf("%d%d",&n,&m)!=EOF)
{
long long int re;
if(n==m)
printf("%lld\n",a[n]);
else
{
// re=a[m]*C(n,m);
re=a[m]*C[n][m];
printf("%lld\n",re);
}
}
return 0;
}